Solving RAD Equations =

How do we solve a reaction-advection-diffusion equation numerically? As an example, we’ll deal with a
multicomponent biological/physical model

o B ,
Ebi + ua—xbi = kV*b; + Bi<b17b2, ey X, t)

where B is a nonlinear function expressing the interchanges of biomass or quantity of nutrient between the
various components b;.

Time-stepping ==

Test version.
First of all, how do we solve a set of ODE’s (e.g., if b; is independent of x)

d
Zbi = Bi(b,t)

Euler step ce=m

testing save stuff
The simplest approach is an Euler step which uses Taylor expansion

bi(t + dt) = b;(t) + Bi(b(t), t)dt + O(dt?)

The [Lotka-Volterra example] shows why this approach is not generally useful: it has a bias and, as you
can see by , the convergence is very slow.
The bias can be understood by considering

d d
—X = — V==X
dt Vo dtV

The Euler step has

X2(t+dt) + V2t +dt) = [X2(t) + V2)](1 + dt?)
so that the energy increases steadily with time whereas the ODE’s have

%[XQ +V?=0

Leapfrog e===

So we consider various higher order schemes. The Leapfrog method is based on a second order time
derivative

b(t +dt) — b(t — dt) = 2 dt B(b(t),t) + O(dt?)

but is subject to an [alfernating step instability] . Try by adding 95% of the leapfrog and
5% of an Euler step or by doing an Euler step every 20 steps.
Exercise: Convert to a second order Adams-Bashforth scheme

b(t + dt) = b(t) + dt B(1.5b(t) — 0.5b(t — dt), ¢ + dt/2)

by using the saved values of b differently. You can start with an FEuler step.

http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?main
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?ts
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?euler
http://synoptic2.mit.edu/~debuser/php/request.php/numfl/ch4a?m;ddt='dxdtlv';method='for';dt=1/8;tmax=100;ts
http://synoptic2.mit.edu/~debuser/php/pkg.php/numfl/ch4a?m;eul;eul.m,dfdt.m
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?leapfrog
http://synoptic2.mit.edu/~debuser/php/queue.php/numfl/ch4a?m;ddt='dxdtlv';method='lea';dt=1/8;tmax=20;ts
http://synoptic2.mit.edu/~debuser/php/pkg.php/numfl/ch4a?m;leap;leap.m,dfdt.m

Runge-Kutta me=m

Runge-Kutta schemes require multiple function evaluations per step. We can think of this as making
an estimate of b at some point between ¢ and ¢ + dt and then using this to estimate the derivative there.
The final step is based on an average of two derivative values:

bi = bi(t) + adtB;(b(t),t)
bi(t + dt) = b;(t) 4+ (1 — B)dtB;(b(t),t) + BdtB;(b, t + cdt)

which matches the function and the first and second derivatives when a8 = 1/2. We've looked at a = 1/2,
2/3, and 1 corresponding to § = 1, 3/4, and 1/2; the results are pretty similar. The case with o = 1/2 is
pretty intuitive: the step in b; is equal to dt times the average derivative in the interval [¢,¢ + dt]. We can
make a better estimate of the average derivative than using the value at time ¢ by looking at it half way (at
t 4+ dt/2). The first half step gives an approximation to the value of b;(t + dt/2) which we use to estimate
the derivative Bi(f), t + dt/2) and then advance b; by dt times this estimate of the average derivative. The
« = 1 case means we're calculating the derivative by averaging the value at ¢ and an estimate of the value
at t + dt; I usually use this version.

Adams-Bashforth ee=
Adams-Bashforth methods keep a history of the previous B; values (unlike the leapfrog method which
keeps the b;) to make a better estimate at the new time step.
bi(t + dt) = b;(t) + dt[aB;(b(t),t) + BB;(b(t — dt),t — dt)]
Taylor-expanding each side using

ddb, d

d d dB; 9B, db;
dt dt — dt

ot b, ot

Bi(b(t),1) =

gives
db; 1 ,d%b;
7 *dt2 i
a2 ae
0B, | 0B, ob,
ot ob; Ot

bi(t) + dt

1
bi(t) + dtB; + 5dt2 [

at " ab, ot

oB; 0B; 0b;
b; + dt(a+ B)B; —dtQﬂ |:]J:|
Therefore a + 5 =1. g = —%, a= % The dt? terms will not match up; this is a second order scheme.
Alistair Adcroft (primary numerical analyst for the MITgecm) recommends a version of the Adams-

Bashforth based, like the leapfrog method on a history of b. The second order scheme is

bi(t + dt) = b;(t) + Bi(b(t + dt/2),t + dt/2)dt
1

- 3
b(t+dt/2) = §b(t) ~3 b(t — dt)
For a different set, try
o, PN 7P 4P
o "Nk IPam

0 4P

o’ = YpPyp

with ;1 = 0.01, N = Ny —P—Z, Np =5, ks = 0.1, P, = 0.5, g =0.1,a =1, d, = 0, d, = 0.08. Comparison
is RK4, dt = 1/8.

d,Z

http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?rk2
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?ab2

Spatial derivatives o=

The spatial derivative terms can be approximated by finite differences, finite elements, or spectral
schemes. Finite differences are the simplest. We consider the flux form
0 0 0
—b=——+J , J=ub—k—0>
ot ox ox
and use a “staggered grid” which has b values in the center of the boxes and J values on the faces. In one
dimension, this looks like

| = =bli1) = =] = —b(ai) — | = ~b(zis1) - |
J(wi-15) J(wi0.5) J(Tivos5) J(Tiy15)

so that 9

Eb(xi) = —[J(®it05) — J(xi—05) < dx]

The advantage is that we account for all the material: flux out of one box automatically enters another.

Centered oc=m

To evaluate the flux, we again use centered differences for the diffusion term and try a centered difference
for the advection term also: we estimate b(z;40.5) =~ %b(ml) + %b($i+1)

UpWind =m

The upwind scheme uses
ub(z;) u>0
ub(ziy1) w <0

J(Titro5) = {

i.e., we flux material out of the box which is upwind of the face.

The fourth order scheme uses a cubic polynomial fit to two points to the left and two to the right, while
the third order upwind uses two upwind and one downwind point. The estimate of b(z;y¢.5) is multiplied
by the appropriate u.

CFL e

All of these schemes are subject to the “CFL” condition. The upwind scheme is simplest to analyze.
Consider beginning with b nonzero only at a single point. One time step later
wdt wdt
b(z;) =bo(1———) , b(xit1) =bo——
(@) =bo(L= %0 L b)) = b’
Clearly, we have a problem if udt/dx > 1. In essence, more tracer is fluxed out of the box in one step than
is present there to begin with. So you get b values outside the range of the initial values; this is not physical,
and the errors will grow exponentially. Try it in the earlier examples.

Positivity ==

Keeping b positive is also a problem; it works for upwind differencing but not other forms. In the case
of centered differences, we will have

dt u K
bzi_1) =bg—(—= + —
(i) Odm(2+dx)
2kdt
b(w;) = bo(1 — Tz)
dt u K
bz — by (= 4 —
(wis1) de(2 dac)

to maintain positivity, we need u < 2x/dr and k < dz?/2dt.

http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?spatial
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?cent
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?upwind
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?cfl
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?fluxcorr

Flux correction ce=m

Flux correction ensures that the fields remain positive, or, more generally, that new values will not
exceed the range of values in the original cell and its neighbors.

Two-D ===

The [mavie herel shows an example.
1) Just to check, we also can load a [MITCITE experiment] , which should bring up the usual stuff. This

is a local case.
2) We can also have remotely run cases such as this: the MITGCM can be used to explore the problem in
more detail. The [GCM Example xx] shows a simulation of the release of a cylinder of heavier water.
3) Regular URL’s such as [This one for my seminar] should work, as should OV examples.

http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?fluxcorr
http://synoptic2.mit.edu/~debuser/php/edit.php/numfl/ch4a?twod
http://synoptic2.mit.edu/~debuser/php/mov2.php/numfl/ch4a?st-up.gif
http://synoptic2.mit.edu/~debuser/php/mitcite.php/numfl/ch4a?12.802/3-adj/
http://synoptic2.mit.edu/~debuser/php/mitcite.php/numfl/ch4a?stci/mitgcm/gcm-cyl/
http://lake.mit.edu/~glenn/fas/n5/
http://synoptic2.mit.edu/~debuser/php/idv.php/numfl/ch4a?idv.gfsiso1

