
Lecture 1

Series Expansion Methods Edit

Series expansion methods are the general class that encompass spectral and
finite element methods. We approximate functions as a linear combination
of prescribed expansion functions - we call these basis functions. For a con-
tinuous function f(x), we write

f(x) =
N
∑

j=1

ajφj(x) (1.1)

where φj , j = 1, . . . , N , are the basis functions that each satisfy any boundary
conditions on f(x). The coefficients aj are the unknowns and form a vector
of N numbers.

Suppose that we have a partial differential equation of the arbitrary form

L (f) = ρ(x). (1.2)

We define the residual of equation (??) as

r(x) = L (f)− ρ(x) = L





N
∑

j=1

ajφj(x)



− ρ(x). (1.3)

If L is linear and the basis functions, φj(x) are the eigen-functions of L, then
the residual can be set to zero for the whole domain and the resulting N
algebraic equations can be solved for aj. Generally speaking, L is non-linear
so we will describe more general approaches for solving for the coefficients
aj .
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We will consider three strategies: i) minimization of the of l2-norm of the
residual,

(||r(x)||2)
2 =

∫

r(x)2dx, (1.4)

ii) the collocation method where we set the residual to zero at a discrete set
of positions xk (e.g. on a regular grid xk = k∆x),

r(xk) = 0 ∀ k = 1, . . . , N (1.5)

and iii) the Galerkin method which requires the residual to be orthogonal to
each of the basis functions,

∫

φkr(x)dx = 0 ∀ k = 1, . . . , N (1.6)

The collocation method is used in the pseudo-spectral method while the
Galerkin method is used extensively in the finite element method. The spec-
tral method is a special case where the l2-norm and Galerkin method become
equivalent.

There are many variants on these methods and we will discuss one, the
Petrov-Galerkin method. Here, the residual is made orthogonal to a set of
test functions, θk(x), which may be different to the basis set, φk(x):

∫

θkr(x)dx = 0 ∀ k = 1, . . . , N. (1.7)

The Petrov-Galerkin method is more general than the Galerkin method be-
cause if we chose θk(x) = φk(x) we recover equation (??).

1.1 The Spectral Method Edit

Spectral methods are a special case of the series expansion method; the basis
functions form an orthogonal set:

∫

φiφjdx = 0 ∀ i 6= j.

The ability to use an orthogonal basis set is largely dictated by the domain
geometry and boundary conditions. For example, it is natural to use spherical
harmonics in spectral atmospheric models but difficult to model irregular
coasts with the same representation.
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1.1.1 Spectral method compared to the finite differ-

ence method Edit

In lecture ?? we analyzed the numerical dispersion of waves using the finite
difference method applied to the linear advection problem

∂tθ + c∂xθ = 0

in which c was constant. Consider using a Fourier series expansion to repre-
sent θ(x, t):

θ(x, t) =
N
∑

k=−N

ak(t)e
ikx

We’re implicitly assuming a periodic domain −π ≤ π. Note, in this case,
θ(x, t) is real so the coefficients in the series satisfy the property ak = a∗−k

where a∗k is the complex conjugate of ak.
Direct substitution of each component of the series, ak(t)e

ikx, into the
governing equation yields

∂tak + ickak = 0 ∀ k

which is unusually trivial to solve. The corresponding dispersion relation
shows us that all waves, including the shortest, propagate with the exact
correct phase speed.

Note, we did not use any of the methods listed in section ??. Let us apply
the Galerkin approximation (equation ??) to see what happens. Note that
two complex functions, g(x) and h(h), are orthogonal is the integral over the
domain, S, of the product of one with the complex conjugate of the other is
zero: ∫

S
g(x)h∗(x) dx = 0

For this problem, the Galerkin approximation is

∫ π

−π
e−ijx



∂t
N
∑

k=−n

ak(t)e
ikx + c∂x

N
∑

k=−n

ak(t)e
ikx



 dx = 0 ∀ j = −N, . . . , N

(1.8)
and we need to evaluate the following integral:

∫ π

−π
e−ijxeikx dx =















[

ei(k−j)x

k−j

]π

−π
= 0 j 6= k

2π j = k
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Thus the Galerkin approximation yields

2π∂tak + 2icπkak = 0

which is exactly the same results has obtained by direct substitution.
The spectral approximation does not introduce phase speed or amplitude

errors, ignoring time-discretization errors.

1.1.2 Spectral Stommel model in 1-D Edit

This is a somewhat contrived use of the spectral method but allows us to
make a direct comparison with finite difference method used in section ??.

To re-state the problem, we seek solutions to the differential equation:

ǫ∂xxψ + ∂xψ = −1

with boundary conditions ψ(0, 1) = 0.
We will express the solution, ψ(x), in terms of a sin-series:

ψ(x) =
N
∑

j=1

aj sin (jπx) (1.9)

since the functions sin (jπx) all satisfy the boundary conditions. The residual
of the governing equation is

r(x) = ǫ
N
∑

j=1

aj∂xx sin (jπx) +
N
∑

j=1

aj∂x sin (jπx) + 1

= −ǫπ2
N
∑

j=1

ajj
2 sin (jπx) + π

N
∑

j=1

ajj cos (jπx) + 1 (1.10)

Using the Galerkin method (??) we require the residual to be orthogonal to
the basis functions:

∫ 1

0
r(x) sin (kπx) dx =

∫ 1

0







−ǫπ2
N
∑

j=1

ajj
2 sin (kπx) sin (jπx)

+π
N
∑

j=1

ajj sin (kπx) cos (jπx) + sin (kπx)







dx

= 0 ∀ k = 1, . . . , N (1.11)
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Once we evaluate the integrals and sums it will become apparent that (??)
represents a set of N algebraic equations in the unknowns, ak.

The first term in (??) involves the expression

∫ 1

0

N
∑

j=1

ajj
2 sin (kπx) sin (jπx) dx =

N
∑

j=1

ajj
2
∫ 1

0
sin (kπx) sin (jπx) dx.

Evaluating the integral inside the sum we get

∫ 1

0
sin (kπx) sin (jπx) dx =











1
2

j = k

0 j 6= k

which reflects the orthogonality of the basis set. Evaluating the sum over j,
the first term in (??) becomes

−ǫπ2
N
∑

j=1

ajj
2
∫ 1

0
sin (kπx) sin (jπx) dx =

−ǫπ2

2
akk

2.

The last term is similarly straight forward:
∫ 1

0
sin (kπx) dx =

−1

kπ
[cos (kπx)]10 =

1− cos (kπ)

kπ
=

1− (−1)k

kπ

which is 2/kπ when k is odd and is zero when k is even. The beta term is
more complicated; the inner integral evaluates to

∫ 1

0
sin (kπx) cos (jπx) dx =

k − k(−1)(j+k)

π(k2 − j2)
.

When j+k is even, which includes j = k, the numerator and integral is zero.
When j + k is odd the expression becomes 2k/π(k2 − j2).

Substituting all these results back into ?? we obtain

−ǫπ2k2

2
ak +

N
∑

j=1

aj
jk(1− (−1)(j+k))

k2 − j2
=

(−1)k − 1

kπ
∀ k = 1, . . . , N (1.12)

which represents N algebraic equations for the unknowns ak. We pose this
as a linear algebra problem of the form Aa = b where

a =















a1
...
ak
...















, b =















2
π
...

(−1)k−1
kπ
...
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and A whose elements are given by

Ajk =
ǫπ2k2

2
δij +

jk(1− (−1)(j+k))

k2 − j2

where the symbol δij is the Kronecka function; δij = 1 ∀ i = j and δij =
0 ∀ i 6= j. This is a “full” matrix meaning it is not sparse; many elements
are non-zero. Recall that the matrix problem corresponding to the second
order finite difference Stommel model was a tri-diagonal matrix which is a
lot easier to invert. The basis functions and solution using N = 6 are plotted
in Fig. ?? and examples of higher truncations given in Fig. ??. The error for
a range of truncations is plotted as a function of N in Fig. ??. Note that the
slope of the error curves seems to steepen downward as N increases - this
is a strong motivation for using the property of spectral methods; they have
incredible convergence properties.
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Figure 1.1: Top: The basis functions used in the spectral method solution of
the Stommel model (N=6). Middle: the components of the solution due to
each basis function, ajφj(x). Bottom: the numerical solution and analytical
solution.
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Figure 1.2: Spectral solutions to the Stommel problem using different length
Fourier series, N = 6, 12, 20, 40, 60, 100, 200, 400.
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Figure 1.3: Convergence of the spectral method. The error, measured by the
l1, l2 and l∞ norms, is plotted as a function of N . Note the increasing rate
of convergence as N is increased.
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Figure 1.4: a) The chapeau function and b) the top hat function

1.2 Finite elements using Chapeau functions

Edit

As an example, consider the problem of constant advection in one-dimension:

∂tu+ c∂xu+ ν∂xxu = 0

We’ll describe the dependent variable, u, using the chapeau basis functions:

φj(x) =

{

0 ∀ |x− xj | > ∆x

1−
|x−xj|

∆x
∀ |x− xj | ≤ ∆x

(1.13)

which is plotted in Fig. ??a. Using the Galerkin approximation (??), we
have:

N
∑

j=1

∫ ∞

−∞
φi (∂tujφj + cuj∂xφj − νuj∂xxφj) dx = 0 ∀ i = 1, . . . , N (1.14)

In this expression we see products of basis functions and derivatives of basis
functions. We can evaluate the integrals of these expressions:

∫ ∞

−∞
φiφidx =

4

6
∆x

∫ ∞

−∞
φiφi±1dx =

1

6
∆x

∫ ∞

−∞
φi∂xφidx = 0

∫ ∞

−∞
φi∂xφi±1dx = ±

1

2
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∫ ∞

−∞
φi∂xxφidx =

−2

∆x
∫ ∞

−∞
φi∂xxφi±1dx =

±1

∆x

where the last two integrals were carried out by parts. Equation ?? then
becomes

1

6
(∂tui−1 + 4∂tui + ∂tui+1) +

c

2∆x
(ui+1 − ui−1)−

ν

∆x2
(ui+1 − 2ui + ui−1) = 0

or, returning the finite difference notation,

Ax∂tu+
c

∆x
δiu

i −
ν

∆x2
δiiu = 0

where the averaging operator, Ax is defined:

Axu = u+
1

6
δiiu =

1

6
(ui−1 + 4ui + ui+1)

The finite element method gives fourth order spatial accuracy in this
problem. For comparison, the second order finite difference approximation is

∂tu+
c

∆x
δiu

i −
ν

∆x2
δiiu = 0

and the fourth order finite difference approximation:

∂tu+
c

∆x
δiu−

1

6
δiiu

i

−
ν

∆x2
δii(u−

1

12
δiiu) = 0

which uses a five point stencil. The dispersion relation for the undamped
waves (ν = 0) in these approximations are plotted in Fig. ??. Note that
although the stencil of the finite elements method is only three points (as
for the second order finite difference approximation), and that the formal
truncation is O(∆x4), the dispersion relation is far more accurate than even
the sixth order finite difference approximation.

Finite element Stommel model

Note that we can trivially see what the finite element approximation to the
Stommel problem would be by simply dropping the time-derivative in the
above problem. The resulting discretization is exactly the same as the second-
order finite difference discretization.
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Figure 1.5: Dispersion relations for the O(∆x2), O(∆x4) and O(∆x6) fi-
nite difference methods and the O(∆x4) finite elements method (using the
chapeau basis functions).
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1.3 Note on Finite Fourier series Edit

Different texts use different apparent representations of finite Fourier series
which are in fact equivalent. For a real valued function, φ(x), one series
representation may be written

φ(x) = a0 +
N
∑

k=1

ak cos (kx) +
N
∑

k=1

bk sin (kx)

which has 2N +1 degrees of freedom and where all coefficients are real. This
representation has the advantage that it is immediately obvious that all terms
are real. A more succinct series representation is

φ(x) =
N
∑

k=−N

cke
ikx

which also has 2N + 1 coefficients but where the coefficients ck are complex.
A complex number has two components, real and imaginary, and one may
wonder if there are in fact 4N + 2 degrees of freedom. If φ(x) is real, then
the coefficients must satisfy a certain constraint as we derive now.

Let us write each coefficient ck = cRk + icIk where cRk and cIk are real
numbers. Then each term in the series is

cke
ikx = (cRk + icIk) [cos (kx) + i sin (kx)]

=
[

cRk cos (kx)− cIk sin (kx)
]

+ i
[

cRk sin (kx) + cIk cos (kx)
]

.

It is then obvious that the sum of contributions from modes k and −k can
be written in term of cos (kx) and sin (kx) alone:

cke
ikx + c−ke

−ikx =
[

(cRk + cR−k) cos (kx) + (cI−k − cIk) sin (kx)
]

+i
[

(cRk + cR−k) sin (kx) + (cIk + cI−k) cos (kx)
]

.

To ensure that the function has no imaginary component we need to ensure

cRk − cR−k = 0 and cIk + cI−k = 0

or more simply
ck = c∗−k.
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We can also associate each term in the two forms of Fourier series:

a0 = c0 (which is real)

ak = cRk + cR−k = 2cRk
bk = cI−k − cIk = −2cIk.


