
Reaction-Advection-Diffusion Equations

Most models of biological/physical processes in the ocean build upon four fundamental
processes

• advection: movement by the ocean currents or by the organisms
• diffusion: mixing processes, whether by molecular motion, turbulence, or movement
of organisms/ material relative to the water

• reaction: processes which transfer energy/ biomass/ carbon/... from one group of
organisms (or other categories such as dissolved CO2 or non-living particulates) to
another. These are generally framed as though they were kinds of chemical reactions;
the rates at which the concentration of one component changes is a function of the
concentrations of this property and of its resources or prey and its consumers or
predators.

• boundary forcing: winds, fluxes of heat or freshwater, and tides which generate flows
and alter the temperature and salinity structure. Light, fluxes of carbon, oxygen,
dust/iron, etc. all affect the biology.

The first three of these lead to the basic PDE’s governing the interior dynamics. These
are the reaction-advection-diffusion equations

∂

∂t
bi +∇ · (uibi) = ∇ · κi∇bi + Bi(b1, b2, b3, . . . ,x, t) (1)

where bi(x, t) is the density of the ith class of organisms, Bi represents the processes which
transfer biomass or carbon/ nitrogen mass to this class from the others, κ is the diffusivity,
and u is the advecting velocity.† We’ll abbreviate the reaction terms as B(b,x, t).

trajectories
diffusion

Outline

• basics of advection
- local flow properties

• basics of diffusion
• stability
• conservation and homogenization
• bio dominance
• mixing

- bio fronts
- spatially variable growth/ instability

• advection
- washout

† We shall use boldface such as x to indicate vectors in ordinary three-dimensional space,
with indices or special variable names used as convenient. Thus x = (x1, x2, x3) = (x, y, z)
gives the east, north, and upward distances. Velocities u = (u, v, w) are denoted similarly.

1

http://synoptic2.mit.edu/~debuser/php/mov.php/biophys/rad?traj.gif
http://synoptic2.mit.edu/~debuser/php/mov2.php/biophys/rad?trajdiff.gif


Basics of advection

We can rephrase the basic equation in terms of the D
Dt

operator

(

∂

∂t
+ ui · ∇

)

bi −∇ · κi∇bi = −bi∇ · ui + Bi(b1, b2, b3, . . . ,x, t)

Note that ui includes any movement relative to the water (with the random part included
in κi; for organisms which are nearly planktonic, it makes sense to separate out these
movements and write ui = u+ vi. Applying ∇ · u = 0 gives

D

Dt
bi −∇ · κi∇bi = −∇ · (vibi) + Bi

Convergence (divergence) of the movement-induced fluxes thus acts as a source (sink) of
local concentration.

Local flow properties

We now consider the ways in which advection work, harking back to the example
above to think about how a local volume of fluid behaves. As we saw, it can move, stretch
in some dimensions and shrink in others, and rotate. To see this more clearly, consider
what happens to a line joining two points when the points move with the fluid. The first
point is at X(t) and satisfies

∂

∂t
X(t) = u(X(t), t)

The second point at X(t) + dX(t) evolves according to

∂

∂t
X(t) +

∂

∂t
dX(t) = u(X(t) + dX(t), t)

or
∂

∂t
dX(t) = u(X(t) + dX(t), t)− u(X(t), t)

For small separations,
∂

∂t
dXi ≃

∑

j

∂ui
∂xj

dXj

Henceforth, the sum will be implicit: if a repeated index appears on the right, but not the
left, it is summed over (Einstein notation).

example movement divergence strain rotation strain+rotation
There is, then, a tendency for the whole line segment to translate – both ends have

a u(X, t) component. In addition, the segment changes by the action of the rate of strain
matrix

∂

∂t
Xi =MijXj , M =







∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z






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We can split off the trace of M, which is just the divergence of the flow, and divide the
remaining matrix into symmetric and an antisymmetric pieces

M =
∇ · u
3

I+ S+R

with

S =







2
3
∂u
∂x − 1

3
∂v
∂y − 1

3
∂w
∂z

1
2(

∂u
∂y + ∂v

∂x )
1
2 (

∂u
∂z + ∂w

∂z )
1
2
( ∂v
∂x

+ ∂u
∂y

) 2
3
∂v
∂y

− 1
3
∂w
∂z

− 1
3
∂u
∂x

1
2
(∂v
∂z

+ ∂w
∂y

)
1
2(

∂w
∂x + ∂u

∂z )
1
2 (

∂w
∂y + ∂v

∂z )
∂w
∂z − 1

3
∂u
∂x − 1

3
∂v
∂y







R =
1

2







0 ∂u
∂y − ∂v

∂x
∂u
∂w − ∂w

∂x
∂v
∂x

− ∂u
∂y

0 ∂v
∂z

− ∂w
∂y

∂w
∂x − ∂u

∂z
∂w
∂y − ∂v

∂z 0







The first term represents uniform expansion or contraction. The second is pure strain:
as a real, symmetric matrix, it can be diagonalized in a suitable reference frame

S′ =





s1 0 0
0 s2 0
0 0 s3





with s1 + s2 + s3 = 0. Thus we have contraction along one or two axes (the negative s
values) and expansion along the others.

The third matrix represents rotation:

Rij dXj =
1

2
(ζ× dX)i

with

ζ = ∇× u = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
)
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Vorticity

The curl of the velocity, called the vorticity, plays a central role in geophysical flows,
so it is worthwhile examining it more closely.

ζ

u   dl

Vorticity and circulation

If we take a small disk perpendicular to the vorticity vector, Stokes’ theorem says that

∫

dA ζ · n̂ =

∮

u · dx

The vorticity is directly related to the circulation; we can think of it as the local spin or
swirl of the fluid.

Because of the Earth’s rotation, the flows we deal with are inherently rotational,
meaning ζ 6= 0. To see this, consider the motion of a particle which is stationary with
respect to the Earth. Viewed in an inertial frame, though, it is moving in a circular path
with

u = Ωr ⇒
∮

u · dx = 2πΩr2 ⇒ ζ = 2πΩr2/πr2 = 2Ω

Since large-scale flows are dominated by horizontal motions, we need to consider the cir-
culation on the surface of the spherical earth.

∮

u · dx = Ωa2[cos2(θ − dθ/2)− cos2(θ + dθ/2)]dλ

= −Ωa2 dλdθ
d

dθ
cos2 θ

= 2Ωa2 dλdθ cos θ sin θ
∫

ζ · dA = ζ3 a cos θdλ adθ

⇒ ζ3 = 2Ω sin θ

This is known as the Coriolis parameter: f = 2Ω sin θ.
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The identification of vorticity with rotation makes the vorticity-Bernoulli form of the
equations

∂

∂t
u+ (ζ+ 2Ω)× u = −1

ρ
∇p−∇1

2
|u|2 − ν∇× ζ

more intuitive.
Flows generally have both vorticity and strain; for example a simple shear u = sy has

ζ3 = −s and S12 = S21 = 1
2s. (An exception is solid body rotation u = −ωy, v = ωx

which has vorticity 2ω but S = 0: blobs of fluid rotate but do not stretch out.)
trajectories

Conservation properties [nondivergent flow]

If we have a quantity satisfying

∂

∂t
b+ u · ∇b = 0 or

∂

∂t
b+∇ · ub = 0

and we integrate over the fluid volume

∂

∂t

∫

dV b = −
∫

dS u · n̂ b = 0

Now suppose we have a local maximum in b at some point x. Apply the same argument
to a volume whose surface is defined by b = b0; then

∂

∂t

∫

dV b = −
∫

dS u · n̂ b0 = −b0
∫

dS u · n̂ = −b0
∫

dV ∇ · u = 0

Thus the peak value is preserved. Another way to see this is to consider Lagrangian
variables:

b(X(t), t) = b(X(0), 0) where
∂

∂t
X(t) = u(X(t), t)

Basics of diffusion

Diffusion, on the other hand, reduces maxima and tries to make b uniform. Consider

∂

∂t
b = ∇ · κ∇b ⇒ ∂

∂t

∫

dV b =

∫

dS κ n̂ · ∇b

Over the entire volume, this vanishes with no-flux conditions. Around a local maximum,
however, the r.h.s. is negative definite implying the peak value will decrease. If we split b
into the volume average b and the deviations, we have that

∂

∂t
〈b〉 = 0 ,

∂

∂t

∫

dV
1

2
b′2 = −

∫

κ|∇b′|2

So that the variance will steadily decrease.
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Conservation, homogenization, and movement

Currency-based reaction-advection-diffusion models in which motion and mixing are
purely physical share one property: no matter how many compartments or how complex
the interactions are, the total

bT =
∑

i

bi

satisfies the same advection-diffusion equation as a passive tracer. By construction, we
have accounted for all the exchanges of, say, nitrogen so that

∑

i

Bi = 0 ;

summing the individual biological equations gives

∂

∂t
bT +∇ · uibi = ∇ · κi∇bi

If no biological movement or dispersion occurs, then

∂

∂t
bT + u · ∇bT = ∇ · κ∇bT

which has important consequences:
• Local maxima or minima are smoothed out with time.
• If there is no flux of material through the boundaries, bT will become spatially and
temporally uniform.

• If the values of bT at the boundaries are held fixed, the maximum and minimum values
will be found on the boundary.

We’ve discussed the first and second; diffusion plus the fact that advection cannot creat
local maxima or minima gives the third.

The implications of the second statement in the deep ocean are striking: almost all
of bT will be in the dissolved forms (e.g. nitrate plus nitrite) and the total of those would
be uniform. Since observations indicate significant variability with large and systematic
gradients, we cannot expect a closed, purely advective/diffusive model to work well for an
ocean basin.

Inhomogeneous sources or sinks for one or more constituents (e.g., riverine input of
nutrients) can lead to inhomogeneous distributions for the same reasons that salinity is
nonuniform – the variations on the top or sides will be advected into the interior and their
amplitude will be attenuated, but not erased, by diffusion.

In addition, living creatures (or, for that matter, detrital material) move relative to
the water so the ui and κi can be different from the fluid motion. In that case

∂

∂t
〈bT 〉 = 0
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∂

∂t
b′T +∇ · (uib

′
i − κi∇b′i) = 0

∂

∂t

1

2
b′T

2
+ b′i∇ · (uib

′
i − κi∇b′i) = 0

∂

∂t
〈1
2
b′T

2〉 = −〈1
2
b′i

2∇ · ui〉 − 〈κi|∇b′i|2〉

Variance decreases because of diffusion, but can increase when some of the biological
velocities are convergent.

Stability

Stability generally deals with the following question: if we have one solution to the
equations (called the basic state), will a perturbed solution which is initially near the basic
state remain near it? To assess this with a given model, we need to define the basic state
bi and then solve the equation for the perturbation b′i = bi − bi

∂

∂t
b′i +∇ · uib

′
i −∇ · κi∇b′i = Bi(b+ b′)− Bi(b)

(This ignores density dependence in the biological velocities and diffusivities). We want to
know whether all solutions with ||b′(0)|| small will have ||b′(t)|| remaining small. During
the phase when the perturbations are small, we can solve for their evolution by linearizing
the right side

Bi(b+ b′)− Bi(b) ≃
∂Bi

∂bj
b′j = Bijb

′
j

(summed over j). The Bij matrix is evaluated at the local basic state values.
Mostly we deal with basics states which are steady neglecting time dependence in B.

In that case, Bij is a constant matrix; the pure biological problem

∂

∂t
b′i = Bijb

′
j

has solutions of the form
b′i(t) = exp(tBij) b

′
j(0)

where the matrix exponential can be defined by a Taylor series

exp(tBij) =
1

n!
tnBn

ij

but more usefully in terms of the eigenvalues and eigenvectors of Bij :

Bijvjk = vikσk

Here the kth column of vik is the eigenvector corresponding to eigenvalue σk. Then

exp(tBij) = v−1
ik e

σktvkj
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When the real part of every eigenvalue is negative, all perturbations will eventually decay
and we call the equilibrium stable; if the real part of one or more is positive, that mode will
grow to large amplitude (when the Taylor approximation breaks down) and we call the
equilibrium unstable. Purely imaginary eigenvalues correspond to neutral modes which
simply oscillate; the linearized equations are not entirely adequate. As we shall discuss
later, the transient behavior even of a stable system can show considerable temporary
growth, so that an asymptotic stability result may be misleading, but it is at least a start.

For the Q-NPZ model, the matrix Bij is

Bij =

(

µ(NT − P − Z)− gZ − dP − µP −(µ+ g)P
agZ agP − dZ

)

which simplifies for the three equilibria to

P = Z = 0 , Bij =

(

µNT − dP 0
0 −dZ

)

Z = 0, P = NT − dP /µ , Bij =

(

−µP −(µ+ g)P
0 agP − dZ

)

P = dz/ag, Z = (µNT − µdZ/ag − dP )/(µ+ g) , Bij =

(

−µP −(µ+ g)P
agZ 0

)

For a 2 × 2 real matrix, at least one of the eigenvalues will have a positive real part if
the trace (Tr, the sum of the diagonal elements) is positive or the determinant (Det,
the product of the diagonal elements minus the product of the off-diagonal elements) is
negative. Thus the P = Z = 0 state becomes unstable when µNT > dP – phytoplankton
have enough nutrient to grow. The P 6= 0, Z = 0 state will become unstable when
agP > dZ ; at this point, the phytoplankton have sufficient biomass to support zooplankton
growth. In both cases, the determinant switches from positive to negative before the trace
becomes positive. Finally, the state with both P and Z non-zero will always have negative
Tr and positive Det, so that all perturbations will decay .

For the NPZ(M) [Michaelis-Menten/ Monod] model, it is useful to pose the problem
in terms of per-capita rates

∂

∂t
bi = biRi(b)

so that steady states have either bi = 0 or Ri = 0. The perturbation problem

∂

∂t
b′i = Ri(b)b

′
i + bi

∂Ri

∂bj
b′j

can have growth if bi = 0 and Ri > 0 or if bi 6= 0, Ri = 0, and at least one eignevalue of
Rij is positive. For a system like the Franks (2002) formulation

Rp = I(light)u(N)− g(P )Z − dp(P )

Rz = aPg(P )− dz(Z)
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and

Bij =

(

P (−Iu′ − g′Z − d′p) −P (Iu′ + g)

Za(Pg)′ −Zd′z

)

(primes being derivatives). With type II curves, u′ > 0, (Pg)′ > 0 but g′ < 0. If
d′z = 0 (linear mortality on Z), Det will be positive, and instability can only occur if
−Iu′ − d′p − g′Z > 0. For the NPZ(M) form, we need

gZ

(P + P1/2)2
>

µN1/2

(N +N1/2)2

Biological terms dominant

Sometimes we can think of the physics as weakly perturbing the biological state; if

∂

∂t
bi = Bi(b,x, t)

then
∂

∂t
b′i ≃ Bijb

′
j −∇ · (uibi − κi∇bi)

When B depends only on space, not time, this can be solved formally as

∂

∂t
b′i = etBijb′j(0)−

∫ t

0

dt′e(t−t′)Bij∇ · [uj(t
′)bj(t

′)− κj∇bj(t′)]

If the rates associated with Bij (the eigenvalues) are large,

Bijb
′
j = ∇ · (uibi − κi∇bi)

Note the cross connections here; in the NPZ case, we have

agP1/2

(P1/2 + P )2
P ′ = ∇ · (uiZ − κi∇Z)

Advection and diffusion of Z gradients cause perturbations in the P biomass.
A similar analysis can be done assuming the basic state includes diffusion but not

advection; the forcing term then is the u · ∇b. In the equivalent of Franks’ problem, b is a
function only of z and

Bijb
′
j +∇ · κ∇b′i = w

∂

∂z
bi

The response to upwelling(ignoring κ) show an increase in P and loss of Z in the deeper
water. The two-d calculation shows the development of a deep bloom as in Franks’ study;
this experiment starts from rest however and takes about two years to settle. The movie
shows a longer development, and, at the end, the upwelling, center, and downwelling areas
resemble the prediction above, but not that closely.
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Small amplitude characteristics

For a number of problems, we can learn a lot by looking at the behavior near the
origin (for the biotic variables)

D

Dt
bi ≃ Ri

∣

∣

0
bi +∇ · κ∇bi

or
D

Dt
b = g(x)b+∇ · κ∇b

where we’ll use g for Ri

∣

∣

0
and drop the i subscript.

General comments

We can divide the equation by b and derive the one for β = ln(b):

D

Dt
β = g(x) +∇ · κ∇β + κ|∇β|2

If β is growing, and we look near a local maximum, the g term must be big enough to
overcome the diffusive losses from the 2nd term. The 3rd term will be higher order, as will
be the curvature terms in g.

Moving fronts

Take u = 0 and g = const.; there are solutions like

exp(−k[x− ct])

with
kc = g + κk2

The minimum c value occurs at

k =
√

g/κ , c = 2
√
gκ

The front develops exponentially at the leading edge and then (in the presence of a
logistic term) equilibrates. The speed becomes constant (as in the 3D plot). With an
NPZ model we see two fronts. In general, these correspond to solutions coming out of the
unstable point at the origin and then connecting to some nonlinear equilibrium.
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Local growth

Suppose we have a spatially variable growth rate which is negative over most of the
domain, with regions of positive values. When can a starter population grow? We can
look for exponential solutions

σb = g(x)b+∇ · κ∇b
This is a form of Schrödinger’s eqn; we are looking for “bound states” with b positive. If
σ > 0, this solution will grow and establish a resident, self-sustaining population.

We can roughly describe the effects of nonlinearity if it’s not too strong. For a logistic
system

∂

∂t
b = g(x)b− h(x)b2 +∇ · κ∇b

suppose we have a neutral solution

0 = αg(x)b0 +∇ · κ∇b0
with α < 1. Then we have

∂

∂t
〈b0b〉 = 〈gb0b〉+ 〈b0∇ · κ∇b〉 − 〈hb0b2〉 = 〈gb0b〉 − α〈gb0b〉 − 〈hb0b2〉

If we approximate b ∼ A(t)b0(x), we have

〈b20〉
∂

∂t
A = (1− α)〈gb20〉A− 〈hb30〉A2

so that the amplitude grows and saturates.
As an example, consider a circular bank of radius ℓ with positive growth rate g0

surrounded by an infinite area with negative growth rate g1. We can guess that survival will
rely on the growth time 1/g0 being less that the time for diffusive loss ℓ2/κ or g0ℓ

2/κ > 1,
but with some number other than 1. We can find the interior and exterior solutions

b =

{

J0(k
r
ℓ
)K0(k

′) r < ℓ
J0(k)K0(k

′ r
ℓ ) r > ℓ

Matching the derivatives implies a relation between k and k′

kJ1(k)K0(k
′) = k′J0(k)K1(k

′)

The seed population increases at a rate

σ = g0 −
κ

ℓ2
k2 = g1 +

κ

ℓ2
k′2

This gives a second criterion

g0 − g1 =
κ

ℓ2
(k2 + k′2)

which determines the value of k. For the solution to grow, we require

g0ℓ
2

κ
> k2 and

g1ℓ
2

κ
> −k′2

For the example shown, k = 1.75 and k′ = 2.29; if we take g1ℓ
2/κ = −3 and g0ℓ

2/κ = 5.31,
than σℓ2/κ = 2.25 (shape of soln). In any case, the estimate above is ok, but the number
is more like 4.
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Washout

Now let us look at a case with flow through a region of positive growth. Again, a
self-sustaining population has

σb+ u · ∇b = g(x)b+∇ · κ∇b

with σ > 0. Dimensions: U [L/T ], g [1/T ], ℓ [L], and κ [L2/T ] 4 quantities and two
dimensions implying two non-dim parameters.

gℓ2

κ
> func(

Uℓ

κ
) = const +

1

4
Pe2

We can look at the 1D problem for insight; let u = U x̂ so that

σb+ U
∂

∂x
b = g(x)b+ κ

∂2

∂x2
b

We take
b = f(x) exp(Ux/2κ)

to find

σf =

[

g(x)− U2

4κ

]

f + κ
∂2

∂x2
f

The condition for growth now becomes

g0 −
U2

4κ
> const.

κ

ℓ2

Thus we need U to be sufficiently less than the invasion speed 2
√
g0κ; the population

must be able to return to the growing region by diffusion aided by growth faster than it is
washed out by the flow.

In the 1D problem, the population fails if κ is too small or too big. In 2D, if the
favorable region is a bank, the flow may go around to some extent with closed streamlines
on the peak. In that case, small diffusivity may not be such a problem.

We cannot eliminate the flow in the same way; in 2D with u = ẑ×∇ψ−∇φ, we can
set b = f exp(−φ/2κ) to find

∂

∂t
f + ẑ · ∇ψ ×∇f = g̃f + κ∇2f

g̃ = g + ẑ · ∇ψ ×∇φ/2κ− |∇φ|2/4κ+
1

2
∇2φ
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Advection dominant

As an example of a case with advection dominant, consider the problem above and
integrate over the area enclosed by a streamline

∂

∂t

∫

A

f +

∮

∂A

u · n̂f =

∫

A

g̃f + κ

∮

n̂ · ∇f

If ∂A is a streamline, the u is parallel to the boundary, and the second term vanishes. At
lowest order, f = F (ψ) and

∂

∂t

∫

A

f =

∫

A

g̃f + F ′κ

∮

|∇ψ|

Differentiating with respect to ψ gives

∂F

∂t

∮

dℓ

|∇ψ| = F

∮

g̃dℓ

|∇ψ| +
∂

∂ψ

[

κ

∮

|∇ψ|dℓ
]

∂

∂ψ
F

So we expect the variables to become homogenized alsong streamines and then the differ-
ences from streamline to streamline will be smoothed out by diffusion.

Example – flow around a bank

We want to consider whether a population which can only grow in a limited region
can survive against advective and diffusive losses. Georges Bank, for example, has higher
densities in many species compared to the Gulf of Maine or the Shelf Water. Are these
locally retained populations, or are they supported by import from elsewhere? We shall
try to formulate this kind of problem in a crude gulf/ bank geometry with the assumption
that the biological processes favor growth on the bank.

For simplicity, we consider a logistic model

∂

∂t
b+ u · ∇b−∇ · κ∇b =











gb

(

1− b

b0(x, y)

)

− db b < b0

−db b ≥ b0

The carrying capacity (related to the density of the resource) is presumed to vary spatially
and to be localized. For example, we could consider organisms that can only reproduce in
shallow enough water.

In the absence of flow, the population is simply

b = b0(x, y)

(

1− d

g

)

so that we will deal with a problem where the carrying capacity is zero outside the home
range.
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Alternatively, we can examine the case where the growth rate varies spatially (verti-
cally averaged light level, for example) giving

∂

∂t
b+ u · ∇b−∇ · κ∇b =











g(x, y) b

(

1− b

b0

)

− db b < b0

−db b ≥ b0

which has steady solutions

b =







b0

(

1− d

g(x, y)

)

g(x, y) > d

0 g(x, y) ≤ d

The second form is a bit easier to deal with; if b < b0 initially, it should never exceed
the carrying capacity so that you don’t need to test for that. (Numerics may violate this
condition, but the logistic form still leads b to decay back to b0, so it’s not a serious issue.)

Flow field

For the flow, we neglect effects of stratification and friction, and we idealize the ge-
ometry to a domain with walls on the north and west, a circular bank

Topog = h0J0(kr)

and a uniform flow from the east impinging on the domain.
Note that the hydrostatic equations

D

Dt
u− fv = − ∂

∂x

p

ρ

D

Dt
v + fu = − ∂

∂y

p

ρ

∂

∂z

p

ρ
= −g

∂

∂x
u+

∂

∂y
v +

∂

∂z
w = 0

can be solved in a consistent fashion with

∂

∂z
u =

∂

∂z
v = 0

since ∂
∂z [

∂
∂x (p/ρ)] is zero. Thus neither the pressure terms nor the Coriolis terms in the

momentum equations will cause z structure to develop. Likewise, in the material derivative,

D

Dt
u =

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ (w

∂

∂z
u)
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the last term will vanish and the other terms have no z-dependence.
For this barotropic flow, the vertical velocity satisfies

∂2

∂z2
w = 0 ⇒ w = w0(x, y) + w1(x, y)z

Applying the boundary conditions w = 0 at the top (z = 0) and the impenetrability of the
bottom

w = (u
∂

∂x
+ v

∂

∂y
)Topog at z = −H + Topog ≡ −h(x, y)

gives

w =
z

h
uh · ∇h

(with uh being the horizontal velocity) and

∇ · uh +
1

h
uh · ∇h = 0 or ∇ · (uhh) = 0

From this equation, we see that the flow can be defined in terms of a transport stream-
function

hu = −H ∂

∂y
ψ , hv = H

∂

∂x
ψ

To predict the flow, we find an equation for the “potential vorticity.” We write an
equation for the vertical component of the vorticity

ζ = ẑ · (∇× u) =
∂v

∂x
− ∂u

∂y

Take an x derivative of the ∂v
∂t equation and subtract a y derivative of the ∂u

∂t equation:

D

Dt
(ζ + f) + (ζ + f)∇ · uh = 0

Combining this with the conservation of mass in a column gives

D

Dt
(ζ + f)− ζ + f

h

D

Dt
h = 0 ⇒ D

Dt

ζ + f

h
= 0

Thus the potential vorticity, q ≡ ζ+f
h

is conserved. We can express this as

q =
∇ · H

h ∇ψ + f

h

and our dynamical equation

∂

∂t
q +

H

h

(

∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x

)

= 0
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allows us to predict ψ.
When the flow is steady, fluid moves along the streamlines and the value of any

conserved quantity is uniform on a streamline. Thus

q = Q(ψ)

If we evaluate this where the flow is coming into the domain, we can find the function Q.
For uniform westward flow at x = x1 and uniform depth H, we have

q =
f

H
= Q(−U0y)

With the “beta-plane” assumption accounting for the increase in 2Ω sin θ with latitude —
f = f0 + βy —, we have

HQ(s) = f0 − β
s

U0

The dynamical equation simplifies to

∇ · H
h
∇ψ + f0 + βy =

h

H

(

f0 −
β

U0
ψ

)

or

∇ · H
h
∇ψ = f0

h−H

H
− h

H

β

U0
ψ − βy

We approximate this by replacing the h/H terms by one

∇2ψ = f0
h−H

H
− β

U0
(ψ + U0y)

This is the quasigeostrophic equation, and we can solve it for ψ.
The solutions show a population can be maintained on the bank for weak enough

flow and strong enough growth.
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