Numerical methods

Time-stepping
Consider the Adams-Bashforth scheme described (very briefly) in class for solving

$$
\frac{d}{d t} b=\mathcal{B}(b, t)
$$

using

$$
\begin{gathered}
b_{e}=\alpha b(t)+(1-\alpha) b(t-d t) \\
b(t+d t)=b(t)+d t \mathcal{B}\left(b_{e}, t+\gamma d t\right)
\end{gathered}
$$

- Optional: Find α and γ by ensuring that the Taylor expansions around $t=0$ of the two sides of the last equation match to at least order $d t^{2}$ and to see whether they can also match at order $d t^{3}$. First expand b_{e} and substitute into the last equation. Then expand away. Note that

$$
\frac{d^{2}}{d t^{2}} b=\frac{d}{d t} \mathcal{B}(b, t)=\frac{\partial}{\partial t} \mathcal{B}+\frac{d b}{d t} \frac{\partial}{\partial b} \mathcal{B}=\frac{\partial}{\partial t} \mathcal{B}+\mathcal{B} \frac{\partial}{\partial b} \mathcal{B}
$$

etc.

Space discretization

For an equation

$$
\frac{\partial}{\partial t} b=-\frac{\partial}{\partial x} F
$$

we let b_{n} be the average value in the grid cell $\left(x_{0}+\left[n-\frac{1}{2}\right] d x, x_{0}+\left[n+\frac{1}{2}\right] d x\right)$; you can think of it as the value at $x_{0}+n d x$. We calculate the fluxes $F_{n-\frac{1}{2}}$ at the edges $x_{0}+\left[n-\frac{1}{2}\right] d x$. Then

$$
\frac{\partial}{\partial t} b_{n}=\frac{1}{d x}\left[F_{n-\frac{1}{2}}-F_{n+\frac{1}{2}}\right]+\mathcal{B}\left(b_{n}, x_{n}, t\right)
$$

For advective-diffusive problems,

$$
F=u b-K \frac{\partial}{\partial x} b
$$

becomes

$$
F_{n-\frac{1}{2}}=u_{n-\frac{1}{2}}\left(b_{n-1}+b_{n}\right) / 2-K\left(b_{n}-b_{n-1}\right) / d x
$$

This has been implemented in a periodic domain $x=-10$ to $x=10$ with $d x=1 / 8$ and constant $u=1$. The code is here.

- Start with a gaussian $b=\exp \left(-\frac{1}{2} x^{2}\right)$. You need $d t$ sufficiently less than $d x / u$. How big does K have to be to insure positive b ?

Enhancement at front

- Now modify the code to solve

$$
\frac{\partial}{\partial t} b=-\frac{\partial}{\partial x}\left[u b-K \frac{\partial}{\partial x} b\right]
$$

with

$$
u=-x \exp \left(-\frac{1}{2} x^{2}\right)
$$

Note that $b(1)$ is at $x(1)=-10+d x / 2$ but $u(1)$ is at -10 . How large does b become compared to the value far from the front? Compare to the analytical solution $b=b_{0} \exp \left[\frac{1}{K} \exp \left(-\frac{1}{2} x^{2}\right)\right]$. How long does it take for the peak to be pretty much established? $t=1$ is an advective time, while $1 / K$ is a diffusive time.

Searching

Now consider an individual predator searching within the field $b=b_{0} \exp \left[\frac{1}{K} \exp \left(-\frac{1}{2} x^{2}-\right.\right.$ $\left.\left.\frac{1}{2} y^{2}\right)\right]$ now considered as a function of x and y. The predator's position is given by

$$
\frac{\partial}{\partial t} X=U \quad, \quad \frac{\partial}{\partial t} Y=V
$$

and the angle changes by turning towards higher values of b and accelerating up the gradient

$$
\frac{\partial}{\partial t} U=[\alpha V+\beta] \frac{\partial}{\partial x} b(X, Y) \quad, \quad \frac{\partial}{\partial t} V=[-\alpha U+\beta] \frac{\partial}{\partial y} b(X, Y)
$$

- Play with α and β to see what behaviors result. Use the model here. How might you change this model to give more sensible results?

