
Movement

In the random flight case above (ignoring all the population dynamics to focus just
on movement), the position and velocity evolve according to

dX = Udt

dU = −r[U− ũ(X, t)]dt+ β(X, t)dR

with ũ the preferred velocity.
We want to find the effective diffusivity

κb =

∫ t

dt′〈Ui(t)Uj(t
′)〉

and the spread of a patch, showing that the latter aslo corresponds to diffusion.
From the velocity equation for constant ũ

〈U(t+ dt)〉 = (1− rdt)〈U(t)〉+ rdtũ ⇒ U → ũ

We can write U′ = U− ũ then ignore ũ, noting that it just gives translation of the whole
pattern (not true when it’s variable, of course). Then we can show that

〈U ′

i〉 → 0

〈U ′

i(t)U
′

j(t)〉 →
β2

2r
δij

〈U ′

i(t)U
′

j(t− dt)〉 = (1− rdt)〈U ′

i(t− dt)U ′

j(t− dt)〉

〈U ′

i(t)U
′

j(t− τ)〉 = (1− rdt)τ/dt
β2

2r
δij

≃ exp(−r τ)
β2

2r

giving a diffusivity of

κb =
β2

2r2

To see, the spread, we look at this example. The mean square displacement 〈X2 + Y 2〉
grows linearly with time.

〈Xi(t+ dt)Xj(t+ dt)〉 = 〈Xi(t)Xj(t)〉+ 〈Xi(t)Uj(t) +Xj(t)Ui(t)〉dt

〈Xi(t+ dt)Uj(t+ dt)〉 = 〈Xi(t)Uj(t)〉 − rdt〈Xi(t)Uj(t)〉+ 〈Ui(t)Uj(t)〉dt

⇒

〈XiUj〉 →
1

r
〈Ui(t)Uj(t)〉 =

β2

2r2
δij

⇒

〈Xi(t)Xj(t)〉 → 〈Xi(0)Xj(0)〉+
β2

r2
δijt
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The latter corresponds to a diffusivity of κb = β2/2r2.

∂

∂t
b = κb∇

2b ⇒
∂

∂t

∫

b = 0 ,
∂

∂t

∫

xb = 0

∂

∂t

∫

x2b = 2κb

∫

b ⇒

∫

x2b
/

∫

b → 2κbt

• Area grows like 4κbt (6κbt in 3-D)
• Velocity variance is rκb

In the more general case when ũ and/or β vary, we can consider the probability
distribution P(x,U)

∂

∂t
P = −

∂

∂xi
UiP −

∂

∂Ui
r[ũi − Ui]P +

∂2

∂U2

i

KUP

with KU = β2/2. From this, the biomass density b(x, t) =
∫

dUP(x,U, t) changes by the
divergence of fluxes

∂

∂t
b = −

∂

∂xi
Fi , Fi =

∫

dUUiP

If ũ is steady and uniform and KU is constant, the probability distribution will be
Maxwellian:

P = b(x, t)PM(U− ũ, KU/r)

PM (U′, s) = (2π)−3/2s−3/4 exp
(

−|U′|2/2s
)

For this form, the flux is just

Fi =

∫

(Ui − ũi)bPM + ũib

∫

PM = ũib

The basic idea is that this distribution is a good local approximation, but that spatial
variations will generate deviations because of the∇ term, and, in turn, these deviations will
give non-zero flux divergences. If r is large, the distribution is narrow, and the dominant
terms are

L(P) ≡ r
∂

∂Ui
(Ui − ũi)P +

∂2

∂U2

i

KUP

and

L(P) =
∂

∂t
P +

∂

∂xi
UiP
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The lowest order gives P = bPM (U′, KU/r) with U′ = U− ũ. At the next iteration,

L(P) = P

[

∂

∂t
b+

∂

∂xi
ũib

]

+ U ′

jPM
∂

∂xj
b

Multiplying by U ′

i and integrating over U gives

−rFi + rũib =
∂

∂xj

∫

U ′

iU
′

jPM b =
∂

∂xj
δij

KU

r
b

so that

Fi = ũib−
1

r

∂

∂xi

KU

r
b

or

F = (ũ−
1

r
∇rκb)b− κb∇b

with the diffusivity κb being KU/r
2.

∂

∂t
b = −∇ · (ubb− κb∇b) , ub = ũ−

1

r
∇rκb

The velocity includes the fluid velocity and directed swimming (both in ũ) as well as
movement from regions with higher random accelerations into areas where it’s lower. Note
that turbulent diffusion will come from the ub term: if the damping rate is fixed, there’s no
swimming, and κ is constant, the advecting velocity is just u. Both purposeful biological
movement (e.g., a tendency to swim upwards) and variability in the random motion in
response to environmental cues can give a ub which is convergent and tends to increase
the concentration.
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Taxis and Kinesis

Organisms can respond in various ways depending on environmental cues. We repre-
sent the latter by C(x, t) and distinguish

• taxis: ub depends on gradients of cue fields∇C(x, t). Gradients may be sensed directly
or by using memory of past conditions. (The grass is greener over there so let’s go
that way.)

• kinesis: β (and therefore κb) depends only on the local cue field exp(−C/C0). (The
grass is lousy here so let’s move.)

Cues may be environmental (food, light, depth,...) or social (positions of neighbors,...)
• schooling: ub depends on neighbors’ U with |ũ| having a fixed value.

We define taxis as a preference for moving up the gradient of the cue field

ub = α∇C

As an example, we consider C = C0[1− cos(kx)]/2 so that ũ = V0 sin(kx)x̂ and

A = −r[U− ũ− V0 sin(kx)x̂]

The u=0;beta=0.7 case shows aggregation in the favored region; mean flows u=0.5
shift the center downstream; smaller K beta=0.35 gives a tighter pattern.

• Taxis on a spatially and temporally fixed cue field causes aggregation where ∇ · ũ [or
∇2C] is most negative

• Advection can shift this downstream and decrease the strength of aggregation.
• κb controls the width of the aggregation.

As a standard promple, consider swimmming towards a fixed target depth (taken to
be z = 0)

w̃ = −w0 tanh(z/h)

This is a divergent flow, which can, in general be represented as flow down a potential
gradient

ũ = −∇φ

with φ = −αC for taxis. A steady state solution to

∂

∂t
b = ∇ · [b∇φ+ κb∇b]

is just
b = b0 exp(−φ/κb)

For the w̃ above,
φ = −w0h ln cosh(z/h)

and
b = b0[sech(z/h)]

w0h/κb
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Numericsshow this solution is approached rapidly if we start with a uniform distribution
over a finite area.

Social taxis
Social behavior can be represented as a cue which epends on the density of neighbors.

For example,

C(X) =
∑

X′

[

1

4
|X′ −X|4 −

1

2
|X′ −X|2

]

[

|X−X′| < 1
]

gives attraction to neighbors.

Kinesis is a more primitive response in which the random accelerations increase or
decrease depending on the cue field:

β = β(C)

For a first example, we let β = β0 − β1C/C0

u=0;beta0=2.7;beta1=2.4.
• Kinesis can produce aggregation
• Groups tend to be looser, depending on βmax/βmin

This behavior could arise from pausing for feeding, leading to aggregation in regions of
high food concentration.

For an analytical example, we note that if r is constant, the equation is equivalent to

∂

∂t
b = ∇2

KU

r2
b

which has steady solutions

b = const.
1

KU

The net flux from high KU regions (high β) to low KU regions produces convergence
into the latter. Comparison with taxis suggests the results will look rather similar if
KU ∼ exp(−C/C0). The comparison of the stochastic model with the PDE versions quite
good.

Social kinesis
C(X) =

∑

X′

[

1− |X′ −X|2
][

|X′ −X| < 1
]

less randomness Another example assumes organisms turn more frequently in the presence
of many neighbors ⇒ small mean free path.avoidance

Schooling can be represented as

ũ = V0ũ1/|ũ1|

ũ1 = α
∑

X′

(X′ −X)w(|X′ −X) +
∑

X′

U′w(|X′ −X|)

alpha = 0.3 alpha = 0.7
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