
Fluid dynamics and

continuum models of the biota

In fluid dynamics, we do not deal with the individual molecules bat rather are con-
cerned with average properties such as the mass per unit volume (the density ρ =

∑

mi/V )
and the velocity u =

∑

miui/
∑

mi. [Bold face is used for vectors.] Likewise, for organ-
isms, we often – but not always – consider the biomass density b(x, t) meaning the amount
of biomass in a volume V surrounding the point x divided by the V . Reaction-advection-
diffusion models are formulated as sets of PDE’s giving the spatial-temporal evolution of
a set of these fields.

But organisms are discrete individuals, each with its characteristics: species, phys-
iological and physical state [position, velocity, orientation]. “Individual-based models”
attempt to include some of this kind of information, but are necessarily limited to a small
number of organisms. We can take several approaches to getting from individuals to a
continuum representation.

• Spatial average: This is the observational approach; take a net tow filtering some
volume, count the organisms, divide by the volume, and assign that density to the
location of the tow. For small volumes, the statistical fluctuations make ρ unreliable,
while large volumes mix actual spatial variations into the estimate.

• Probabilities: This approach begins with a continuous function P(x,u, t) such that
dxduP is the probability that an organism is in a neighborhood volume dx around x
and du around velocity u. We choose this form, since it also applies to the physics:
molecules are characterized by their position and momentum [in classical mechanics;
in quantum mech. PDF’s are also the fundamental property]. We will relate changes
in the PDF to the deterministic forces and the stochastic accelerations.

You can look at this pdf for more detail; see also Chapter 2.

• Continuum dynamics: Here, we will just use the standard approach of treating the
fluid and the biota as a field – a continuous function of space and time. Since we
deal with macroscopic volumes, this is fine for fluid molecules (and even better with
quantum mechanics), but it gets shakier as we move to scarcer organisms.

The fundamental principle in continuum dynamics for fluids is that the rate of change of
the amount of some stuff b(x, t) in a volume around point x is given by the difference
between the amount moving into and out of the volume and the sources and sinks. The
amount leaving through a small patch of surface of the volume per unit time is given by the
flux F dotted with the outward normal vector times the area. The flux is the amount of
stuff passing through a unit area per unit time. Clearly that will depend on the orientation
of the surface (described by its normal vector; the direction of F will be the one which
maximizes this transport. For a different orientation the flux is given by F · n̂. Examples
include advective flux, purely diffusive flux, and advection plus diffusion.-

The integral of the F · n̂ over the surface will tell us the net amount leaving per unit
time:

∂

∂t

∫

V

dx b(x, t) = −
∮

S

daF · n̂+

∫

V

dxB
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here B represents sources and sink. Applying the divergence theorem gives

∂

∂t
b = −∇ · F+ B

Mass

For mass, or density ρ, the flux is just uρ, using the fact described above that the
velocities are defined by mass-weighted velocities of individual molecules.

∂

∂t
ρ = −∇ · (uρ)

Salt

For properties measured in a per-unit-mass form, like salinity, the conservation law
becomes

∂

∂t
ρS = −∇ · (uρS)

However, there now can be other exchanges across the surface, in particular, diffusion
which leads to a flux down the gradient. Suppose we consider the fluid to be at rest
and take a small volume to the right of the surface, containing ρ(x + dx/2, y, z, t)S(x+
dx/2, y, z, t)dxdydz salt “molecules.” Assume a fraction δ of these move leftward out of
the box and the same fraction leave to the right. In the same way consider a box on the
left (inner) side of the surface. The net amount passing the surface or area dydz is

Fdydzdt = δρ(x− dx/2, y, z, t)S(x− dx/2, y, z, t)dxdydz

−δρ(x+ dx/2, y, z, t)S(x+ dx/2, y, z, t)dxdydz

Taylor expanding gives

F = −δ dx2

dt

∂

∂x
ρS

or

F = −κ
∂

∂x
ρS

Therefore
∂

∂t
ρS = −∇ · [uρS − κ∇ρS]

Using the mass equation leads to

∂

∂t
S = −u · ∇S +

1

ρ
∇ · (κ∇ρS)
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This is usually written using the “material derivative”

D

Dt
≡ ∂

∂t
+ u · ∇

and ignoring ρ factors in the diffusion as

D

Dt
S = ∇ · (κ∇S)

For salinity, the sources and sinks are at the sea surface (where they are really fluxes of
water turning to vapor or from precipitation)or boundaries.

Biota

For quantities measured per-unit-volume, we just have

∂

∂t
b = −∇ · (ub) +∇ · (κ∇b) + B

or
D

Dt
b = −b∇ · u+∇ · (κ∇b) + B

Momentum

In Cartesian coordinates, we can look at individual components of the momentum per
unit volume ρui

∂

∂t
ρui = −∇ · (ρuui) +∇ · (ν∇ρui) + Fi

or

∂

∂t
ui = −u · ∇ui + ν∇2ui +

1

ρ
Fi

D

Dt
ui = ν∇2ui +

1

ρ
Fi

In non-Cartesian geometries (e.g. the spherical Earth), use

∂

∂t
ρ+ div(ρu) = 0

∂

∂t
u+ ζ× u+ grad(

1

2
u · u) = −ν curl(ζ) +

1

ρ
F , ζ = curl(u)

and look up the appropriate forms of the curl, divergence, and gradient. This form drops
the subtleties of the viscous term and the way density comes into it. Here, ζ is the vorticity
and measures the local spin of the fluid.
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Forces

The forces acting on a rotating stratified fluid are gravity (which appears as buoyancy
forces), pressure, Coriolis, and viscous stresses. We need to represent each of these as the
force exerted per unit volume.

Gravity: The effects of gravity are straight-forward: the force is g times the mass
in the downward or negative z direction. The force per unit volume is

F = −ρgẑ

Coriolis “forces” act on matter moving in a rotating system. A particle moving
horizontally but subject to no real horizontal forces appears to move in a curved path
because the Earth is rotating under it. Consider a satellite starting over England given
a push due northward in a polar orbit. It has no east-west or north-south acceleration,
just gravity holding in the orbit. What does the track (marked by periodically dropped
paintballs) look like relative to the ground? This animation of very slow polar orbit
shows the result: the track appears curved. We ascribe this curvature to a fictitious force
perpendicular to the track – the Coriolis force.
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Inertial frame Rotating frame

tΩ δ

t = - 
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t

Figure 1: Particle positions in fixed and rotating frame. Blue lines show the
coordinate axes in the fixed frame, green lines in the rotating frame.

Suppose we consider three snapshots of a particle subject to no external forces viewed
in both a fixed (inertial) and a rotating frame of reference. In inertial space , the particle
is moving in a straight line; we set t = 0 as the time when it passes through the origin
heading along the x-axis. In the inertial (fixed) frame, its position is given by

xf = (u0t, 0, 0)

giving successive points

xf : (−u0δt, 0, 0) → (0, 0, 0) → (u0δt, 0, 0)
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Correspondingly, the positions in the rotating frame are

x : (−u0δt cos(Ωδt),−u0δt sin(Ωδt), 0) → (0, 0, 0) →

(u0δt cos(Ωδt),−u0δt sin(Ωδt), 0)

where Ω is the rotation rate of the reference frame.
Clearly the particle accelerates in the −y direction. Indeed, for this case, using an

approximation to the second derivative gives

d2x

dt2
≃ [x(t+ δt)− x(t)]− [x(t)− x(t− δt)]

δt2

=
x(t+ δt) + x(t− δt)− 2x(t)

δt2

=
(0,−2u0δt sin(Ωδt), 0)

δt2

= −2Ωu0ŷ = −2~Ω× u

Applying the same argument to a particle moving north shows that it also accelerates to
the right.

If we were to postulate some force as causing this acceleration, the strength would be

F = −ρ2~Ω× u

This Coriolis “force” is of course an artifact of dealing with movement in an accelerating
reference frame (remember that circular motion has a velocity vector which is constantly
changing with time) but it can be used just as though it were real. Usually, however, we
will put this term on the left-hand side to keep it with the accelerations relative to the
earth

D

Dt
u+ 2~Ω× u = −gẑ+

1

ρ
F

with F being the remaining two forces.
Pressure represents the forces that the molecules exert as they bounce off each other

during their thermal fluctuations (not the average velocity u). Conceptually, if we consider
a wall in a fluid with no average motion, each time a molecule bounces off a wall, it applies
a force to the wall (and the wall applies an equal and opposite force to reverse the normal
component of the molecule’s velocity). The net force is the product of the average normal
velocity, the mass of the molecules, and the number hitting the wall per unit time. If we
double the size of the wall, we double the number of molecules impinging on it, and double
the force. To account for this, we define the pressure as the force per unit area.

Now consider the forces on a small cube-shaped object centered on location x in the
fluid. If the thermal motion is the same everywhere in the fluid, the forces exerted on the
box by molecules bouncing off the left wall will be equal and opposite to that exerted by
molecules bouncing off the right wall. Therefore the net force on the cube will be zero.
But if the speeds of the molecules on the right are higher than that of those on the left,
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the force on the right side of the box pushing it to the left will be greater than the force on
the left side pushing it to the right. The non-zero net force depends on changes in pressure
and will try to push the box towards the lower pressure regions. The same argument
applies if we replace the solid box with a parcel of fluid; if the molecules on the right are
moving faster, collisions with them will apply more force on the fluid parcel than those
with the molecules on the left. Thus we can see that the force depends on the gradient of
the pressure.

To formalize this, we use the definition of pressure, as the normal force per unit area
exerted by fluid outside a volume on the fluid inside, to write

FV =

∫

∂V

−pn̂d2x ⇒ F1 = − 1

V

∫

∂V

px̂ · n̂ d2x = − 1

V

∫

V

∇ · (x̂p) d3x

In the limit, the force per unit volume is

F1 = −∂p

∂x
⇒ F = −∇p

Viscous stresses are tangential forces acting across a surface; conceptually, a faster
moving (on average) eastward stream located (for example) to the north of a slower stream
will impart some of its momentum to the slower stream by collisions between the molecules,
in effect exerting an eastward force. The slower stream has the opposite effect on the faster
one. Thus, the tendency is to equalize the velocities; the stresses act much like diffusion
of velocity

F = ρν∇2u

where ν is the kinematic viscosity having units (like diffusivity) of L2/T .
Momentum equations: Putting all the forces together gives the momentum equa-

tions

D

Dt
u+ 2~Ω× u = −1

ρ
∇p+ ν∇2u− gẑ (1)
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Thermodynamics, buoyancy, and the Boussinesq approximation

The momentum and mass equations are not sufficient to predict the evolution of the
flow: given the current state at time t, we know how u and ρ change with time but cannot
determine p at t + δt. Fluids have an equation of state relating the density to other
properties including the pressure; for seawater, this is expressed as

ρ = ρ(S, T, p)

where S is the salinity (grams of salt per kilogram of seawater) and T is the temperature.
If ρ were only a function of pressure, we could invert the relationship to find the new
pressure given the new density; however, the dependence on T and S implies we need two
additional evolution equations.

For simplicity, we shall avoid these complications and make the Boussinesq approxi-
mation. We let

ρ ≡ ρ0(z)(1− αθ)

The quantity αgθ = g ρ0−ρ
ρ0

represents the buoyant acceleration, upwards when the density
is lower than average and downwards when it is higher; in the fluid, the effects of gravity
are much reduced – most of it is compensated for by pressure forces. The ρ0(z) takes into
account the most significant part of the compressibility of sea water, the overall increase
in density with depth. If we treat salt and heat separately, then we’d use αθ = αT − βS;
people also use a full equation of state ρ(Tpot, S, p) as well.

p
0

+ ρ 0 gh) A(

ρ ghA ρ 0h

p0 A

Figure 2: The net force per unit mass is (−p0A+ p0A+ ρ0ghA− ρghA)/ρhA =
g(ρ0 − ρ)/ρ.
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We also define a pressure-like quantity φ such that

p = −
∫ z

ρ0g + ρ0φ

so that the pressure gradient and gravitational terms become

−1

ρ
∇p− gẑ = − 1

1− αθ
∇φ+ g

(

1

1− αθ
− 1

)

ẑ− φ

1− αθ

1

ρ0

∂ρ0
∂z

ẑ

= − 1

1− αθ
∇φ+

αgθ

1− αθ
ẑ− φ

1− αθ

1

ρ0

∂ρ0
∂z

ẑ

≃ −∇φ+ αgθ ẑ

where the last step assumes that αθ and N2H/g are small.
The thermodynamic and salinity equations give

D

Dt
θ = κ∇2θ +H

where H represents buoyancy sources from heating or freshening. We’ve assumed that (1)
both the flow speed and

√
gH (the long surface wave speed) are small compared to the

sound speed and (2) κ represents small scale mixing which transfers heat and salt similarly
rather than the molecular processes which give quite different diffusivities.

Neglecting terms of similar order in the mass conservation equation show that the flow
is nearly non-divergent. Putting these equations together gives the Boussinesq system:

D

Dt
u+ 2~Ω× u = −∇φ+ αgθ ẑ+ ν∇2u

∇ · u = 0

D

Dt
θ = κ∇2θ +H

(Bouss)

9



Primitive equations

For many kinds of motion, the horizontal scale is much larger than the vertical. By
“scale” we mean the estimated variance in a field divided by the variance of the gradient
|∂φ∂x | ∼ 1

L |φ|. We can estimate the sizes of terms in the continuity (mass) equation as

∂u

∂x
+

∂w

∂z
= 0

U

L

W

H

Since we don’t expect the flow to be independent of x, the vertical velocity will be order
W = UH/L and will be small if the horizontal scale L is much larger than the vertical
scale H. The horizontal momentum equation, with time scale order L/U , has sizes like

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂φ

∂x
U2

L

U2

L

UH

L

U

H

Φ

L

The pressure will scale like Φ ∼ U2. The vertical momentum is a different story

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂φ

∂z
+ αgθ

U2H

L2

U2H

L2

U2H

L2

U2

H
?

The acceleration terms are order H2/L2 smaller than the pressure gradient, and the density
anomalies will scale like U2/gH which is also generally small (

√
gH in the deep ocean is

order 200 m/s). The vertical momentum equation becomes hydrostatic, so that the density
field tells us a lot about the pressure (but not everything). The resulting equations

D

Dt
u− fv = −∂φ

∂x
+ ν∇2u

D

Dt
v + fu = −∂φ

∂y
+ ν∇2v

∂φ

∂z
= αgθ

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

D

Dt
θ = H+ κ∇2θ

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

This set is the most commonly used form of the equations of motion for motions on the
mesoscale and up (and is not bad for submesoscale)
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Basic solutions [or problems]
We review some of the basic problems and show numerical solutions of them.

Ekman layers

This describes the flow in the upper boundary layer under the influence of wind. The
wind exerts a stress at the top

ν
∂

∂z
u = τ/ρ

If the upper layer were just a slab it would move according to

∂

∂t
u+ f × u =

τ

ρH

As shown here, the slab moves to the right of the imposed force. If we think of the water
as a set of slabs, as the top moves, it exerts stress on the next one which begins to move
and exerts a force back on the top. As a result, the flow develops into a spiral (with
superimposed inertial oscillations, as shown here. This code solves

∂

∂t
u+ f × u =

∂

∂z
ν
∂

∂z
u , ν

∂

∂z
u =

τ

ρ
at z = 0

But we can learn a lot by just looking at the vertical integral assuming the stress vanishes
as z → −∞. For

U =

∫

0

−∞

dz u

we have
∂

∂t
U+ f ×U =

τ

ρ

– essentially the slab equations. Thus the fluid will, on average, move 90 degrees to the
right of the wind with superimposed oscillations cos(ft). I.e., the time-averaged U satisfies

f ẑ×U =
τ

ρ
⇒ U = −ẑ× τ

ρf

Superimposed on this will be an oscillation like cos(ft)
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Ekman pumping

If the wind stress is not spatially uniform, the Ekman transport U will not be constant
and it can converge (driving fluid downwards) or diverge (giving upwelling).

∇ ·U = ẑ · ∇ ×
(

τ

ρf

)

we can connect this to the deeper flow by noting that the integrated transport in the
Ekman layer satisfies

∇ ·U+ wek(0)− wek(−∞) = 0

You can set w = 0 at the top and treat the Ekman flow at the bottom as the upper
boundary condition for the deep layer, or you can regard the boundary layer flow as
vanishing at the bottom and require the Ekman plus interior w to cancel at the top; in
eaither case, we have a condition on the interior vertical velocity

w = ∇ ·U = ẑ · ∇ ×
(

τ

ρf

)

For the simplest subtropical gyre model τy = 0 and ∂
∂y τx > 0, we have w < 0 so that fluid

is pumped down into the interior.

Mixed layer processes

Often the upper part of the ocean has nearly uniform temperature and salinity in a
layer of 10-30 m deep in the summer reacing to 100 m or more in the winter. This is called
the “mixed layer.” Most of the interaction with the atmosphere and a large fraction of the
photosynthesis occurs in this layer, so it is important to understand the processes occurring
therein. One essential point is that “mixed’ is not the same as “mixing”: physical properties
may remain uniform for a long time in a region which is no longer actively mixing.

Convection

Convection occurs when less buoyant fluid overlies more buoyant fluid. Buoyancy here
will be denoted αgθ = −gσ, so that the Boussinesq equations become

D

Dt
u+ f ẑ× u = −∇φ+ αgθẑ+ ν∇2u

∇ · u = 0

D

Dt
θ = κ∇2θ

If ∂
∂z
θ < 0, a parcel displaced upwards will be more buoyant than is surroundings and

will accelerate upwards. The acceleration will be damped by friction (time order H2/ν
and diffusive loss of buoyancy H2/κ. We expect the fluid to convect when the Rayleigh
number

Ra =
H4| ∂

∂z
αgθ|

νκ
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is big enough (great than 100-1000 depending on boundary conditions).
As examples, we show the convection into stratification with a 2D model; the means

show the rapid erosion of the unstable stratification and the mixing into the stably strat-
ified fluid. When cooling is applied to the surface, the mixed layer descends into the
stratification with H ∼ t1/2 as shown by the averages – see also the waterfall view.

Kelvin-Hemlholtz

For u = sz in a domain −H/2 < z < H/2, the available KE is

KE =

∫ H/2

−H/2

ρ0u
2dz = ρ0s

2

∫ H/2

−H/2

z2dz =
1

12
ρ0s

2H3

When the buoyancy profile is also linear αgθ = N2z, the potential energy is lower than in
the well-mixed state

PE =

∫ H/2

−H/2

ρ0gz − ρ0(1−N2z/g)zdz =

∫ H/2

−H/2

ρ0gz − ρ0(1−N2z/g)zdz = ρ0N
2H3/12

The shear instability can overcome the stable buoyancy if s2 > N2; this means the Richard-
son number

Ri = N2/s2

has to be less than 1. In fact, growth of perturbations requres Ri < 1/4. This mechanism,
combined with the shears and inertial waves generated by winds allows the mixed layer to
descend into a stable region even in the absence of cooling. As examples, we show Ri=0.4,
Ri=0.2 and Ri=0.

Mixed layer modesls

There are a variety of mixed-layer models in use; from the biological viewpoint, they
fall into two categories, ones which mix instantaneously and ones which estimate an eddy
mixing coefficient. To see exactly what an eddy viscosity means, consider our equation for
passive but reacting biological densities

D

Dt
bi = Bi(z, t,b) +∇ · κ∇bi

under conditions where the flow is turbulent but everything is statistically horizonatlly
homogemneous. The mean satisfies

∂

∂t
bi = Bi(z, t,b+ b′) +

∂

∂z
(−w′b′i + κ

∂

∂z
bi)

The idea behind “eddy diffusivity” is that the turbulent flux w′b′i is linearly related to the
mean gradient

w′b′i ≃ −K(z)
∂

∂z
bi

13

http://synoptic2.mit.edu/~debuser/php/mov2.php/biophys/fluid0?conv2.fli
http://synoptic2.mit.edu/~debuser/php/fig.php/biophys/fluid0?conv2.png
http://synoptic2.mit.edu/~debuser/php/mov.php/biophys/fluid0?surf.fli
http://synoptic2.mit.edu/~debuser/php/fig.php/biophys/fluid0?surf.png
http://synoptic2.mit.edu/~debuser/php/fig.php/biophys/fluid0?surfa.png
http://synoptic2.mit.edu/~debuser/php/mov.php/biophys/fluid0?kh-ri=0.4.gif
http://synoptic2.mit.edu/~debuser/php/mov.php/biophys/fluid0?kh-ri=0.2.gif
http://synoptic2.mit.edu/~debuser/php/mov.php/biophys/fluid0?kh-ri=0.gif


The equation for the fluctuations

D

Dt
b′i = Bi(z, t,b+ b′)− Bi(z, t,b+ b′)

− w′
∂

∂z
bi +

∂

∂z
w′b′i +∇ · κ∇b′i

is, except for the biological dynamics term, linear in b′ and forced by a term proportional
to the vertical gradient of bi. If this gradient is uniform, and we ignore the biological
terms, we can see that b′ is indeed proportional to ∂

∂z bi so that the eddy flux must have
this form. In general, however, neither the turbulence nor the gradient will be uniform,
and the biological terms ma not be negligible.

Note that the biological nonlinearities also alter the means:

Bi(z, t,b+ b′) ≃ Bi(z, t,b) +
1

2

∂2Bi

∂bj∂bk
b′jb

′

k 6= Bi(z, t,b)

But let us follow the dubious assumptions through to estimate K. We linearize the
biological term

D

Dt
b′i =

∂Bi

∂bj
b′j − w′

∂

∂z
bi +

∂

∂z
w′b′i +∇ · κ∇b′i

and assume the characteristic mixing length is h and scale time by h/W ′. Then the terms
have the orders

D

Dt
b′i =

∂Bi

∂bj
b′j − w′

∂

∂z
bi +

∂

∂z
w′b′i +∇ · κ∇b′i

W ′b′/h b′/Tbio W ′b/H W ′b′/H κb′/H2

1 h/W ′Tbio hb/Hb′ h/H h2/H2(W ′h/κ)

Assume the mixing length is short (h << H) and the biological time is long compared to
h/W ′; then b′ ∼ (h/H)b << b, and this just reduces to the advection equation

D

Dt
b′i = −w′

∂

∂z
bi

If we define the particle displacements as

D

Dt
ζ ′ = w′

then

b′i = −ζ ′
∂

∂z
bi

(slowly varying b and h << H) and the eddy flux is
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w′b′i = −w′ζ ′
∂

∂z
bi

Thus the eddy diffusivity is
K = w′ζ ′

In the over-simplified approximation where the ∂
∂t

term is dominant,

K = w′(t)

∫ t

dt′w′(t′) =

∫ t

w′(t)w′(t′) = w′2

∫

∞

0

C(τ)dτ

with C the autocorrelation function, or

K = w′2 Tturb

where we now see that the time scale is the integral time scale given by Tturb =
∫

dτ C(τ).
More generally, we solve the trajectory equation backwards and relate K to the La-

grangian autocorrelation (Taylor, 1922, but modified for inhomogeneous turbulence).

Convective adjustment:

This is the simplest variety of the instantaneous mixing models, yet a form of it is
used for deep convection in polar regions. All variables are assumed to be well-mixed over
a depth H(x, y, t). The depth is found by the following algorithm: (1) add heating and
cooling to compute the unadjusted αgθ0(z). If

∂
∂z
αgθ < 0, we mix until there is no heavy

fluid overlaying light fluid. This means that

1

H

∫

0

−H

αgθ0(z)dz = αgθ0(−H)

and

αgθ =

{

1

H

∫ 0

−H
αgθ0(z)dz z > −H

αgθ0(z) z < −H

(2) if ∂
∂zαgθ0 ≥ 0, then set H to some fixed or wind-stress determined depth on the order

of 10 m.

PWP

The Price-Weller-Pinckel model has a similar convective adjustment step, followed
by a (perhaps unnecessary) bulk Richardson number step (as in Pollard, Rhines, and
Thompson), and then local mixing of neighboring layers is the Richardson number between
them is less than 1

4
. The grid cells are partially mixed to make Ri supercritical; however,

this will alter Ri(z ± dz), so the process is iterated until all points are supercritical.
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K(Ri) profiles

Philander and Pacanowski developed a simple model in which the eddy diffusivity is a
function of the Richardson number, becoming very large when Ri < 1

4
(including negative

values which implies convection). The KPP model likewise produces a profile of K

K-epsilon, Mellor-Yamada

The Richardson number based closures are first order in that fluxes are functionals of
the mean variables. The higher order closure turbulence models, on the other hand, base
their eddy viscosities on properties of the unresolved turbulence such as the eddy kinetic
energy K = 1

2
|u′|2 and the turbulent dissipation rate E = ν(∇ju

′

i)
2. From the biological

point of view, the physical model is predicting the mixing rates

K =
K2

E SB(Ri′)

The eddy Richardson number Ri′ = ∂αgθ
∂z

K2/E2 corrects the nondimensional function SB

for stratification effects. Dimensional analysis dictates the form of the coefficient (and
relates it to the mixing length theory of Prandtl). Mellor and Yamada predict an eddy
length scale (∼ K3/2/E) instead. The equations for the eddy kinetic energy and dissipation
rate are closed by using the eddy viscosity.

LES

Large eddy simulations try to resolve the larger turbulent eddies and parameterize the
transfers to smaller scales in a way similar to those envisioned by Kolmogorov. However,
these require resolving the largest eddies on the scale of the mixed layer itself and the
beginning of the 3D turbulence range.

Internal waves and tides

When the water is stably stratified ∂
∂z

αgθ > 0, a par cel move upwards will have a
downward acceleration, will overshoot the initial position and end up oscillating. In the
simplest version, we just have

∂

∂t
w = αgθ′

∂

∂t
αgθ′ + w

∂

∂z
αgθ = 0

or

∂2

∂t2
w = −w

∂

∂z
αgθ

So that the vertical velocity oscillates

w = w0 cos(Nt) , N2 =
∂

∂z
αgθ
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with the Brunt-Väisälä frequency N . The period 2π/N is order 10’s of minutes
For waves of the form w = w0 cos(kx+mz − ωt), the dispersion relation

ω2 =
N2k2 + f2m2

k2 +m2

One oddity of internal waves is that the crests and troughs move in one direction (e.g., up
and to the right) but the energy is transmitted in a different direction (down and to the
right).

Internal waves can be generated by wind, by convection hitting the base of the mixed
layer, and by flow over topography. Notably, isolated pulses can be created by tidal flow
over banks.

Eddies

As we move to larger scales, the hydrostatic approximation applies, but also the flow
becomes nearly geostrophic. The terms on the horizontal momentum equation have sizes

D

Dt
u+ f ẑ× u = −∇φ

U2

L
fU

Φ

L
U

fL
1 1

with Φ = fUL. For the mesoscale eddies and jets, the Rossby number Ro = U/fL is small
and the Coriolis terms nearly balance the pressure gradients. Given the pressure, then, we
can find the horizontal velocities and the buoyancy (from the hydrostatic equation).

u =
1

f
ẑ×∇φ

αgθ =
∂

∂z
φ

But this does not tell us how the pressure evolves – we cannot predict the changes in the
flow. In addition, we’d like to know the vertical velocity since that can upwell nutrients.

To find the evolution, consider the vertical component of the vorticity (the curl of the
velocity). Take the x derivative of the ∂

∂tv equation and subtract the y derivative orf the
∂
∂tu equation, eliminating the pressure. For large scales, however, we must account for the
spherical shape of the Earth, so that f = ẑ·2Ω = 2ω sin(θ0 ≃ 2Ω sin(θ0)+[2Ω cos(θ0)/a]y =
f0 + βy. Mesoscale motions have L << f/β. The vorticity eqn. is

D

Dt
(f + ζ) +

∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z
= (f + ζ)

∂w

∂z
+

∂

∂z

(

∂τy

∂x
− ∂τx

∂y

)

or
Dh

Dt
(ζ + βy) + w

∂ζ

∂z
+

∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z
= (f + ζ)

∂w

∂z
+

∂

∂z

(

∂τy

∂x
− ∂τx

∂y

)
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with Dh

Dt = ∂
∂t + u ∂

∂x + v ∂
∂y . For small Rossby number, w ∼ (βL/f)(UH/L) and ζ/f ∼

U/fL; we can simplify this to

Dh

Dt
(ζ + βy) = f

∂w

∂z
+

∂

∂z

(

∂τy

∂x
− ∂τx

∂y

)

We split the stratification into a mean part and horizontally/ temporally varying parts
αgθ =

∫ z
N2 + αgθ′. From geostropic and hydrostatic balance, αgθ′ ∼ fUL/H and is

order (U/fL)(f2L2/N2H2) compared to the vertical variations of the mean stratification.
For the mesoscale, the last term is order one, and the buoyancy equation becomes

Dh

Dt
αgθ′ + wN2 = Q

We can eliminate w to find an approximate conserved quantity

Dh

Dt
(ζ + βy +

f

N2
αgθ′) =

∂

∂z
curl τ+

∂

∂z

fQ

N2

the quasi-geostrophic potential vorticity. The velocities and vorticity are computed from
the pressure using the geostrphic relation; therefore this equation tells us how the pressure
will change.

If, insteady, we use the thermal wind relationship in the form

f
∂

∂z
ζ = ∇2αgθ′

we can eliminate the ∂
∂t

term and find an equation telling us what the vertical velocity is

N2∇2w + f2
∂2

∂z2
w = −∇2(u · ∇αgθ′) + f

∂

∂z
[u · ∇(ζ + βy)] +∇2Q− f

∂2

∂z2
curl τ

with the first two terms determined by the pressure field. Some examples of eddy movement
are shown; nearly linear with velocity independent of depth or surface intensified, and
nonlinear cases.
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Sverdrup flow/ thermocline

The standard approach assumes the interior motions have the same very large scale as
the wind forcing. Then geostrophy folds, but the assumption βL/f << 1 andN2H2/f2L2 ∼
1 no longer hold. We get information about the vertical velocity by substituting the
geostrophic relations

u =
1

f
ẑ×∇φ

into the continuity equation. Then the divergence of the horizontal flow is

∇ · 1
f
ẑ×∇φ = −β

f
v = −∂w

∂z

and we get the Sverdrup relation

βv = f
∂w

∂z

which can be integrated using the Ekman pumping relation and w = 0 at the bottom (or
some depth)

β

∫ 0

−H

dz v = f ẑ · ∇ ×
(

τ

ρf

)

The simulation here shows that the Sverdrup flow first appears throughout the depth;
however, waves from the eastrn boundary shut off the deeper flow and concentrate the
transport into the upper layer. We can examine the upper and lower zonal flow or the
v(x,t) figures to see this. -

Western boundary currents

The experiment above shows that the wind-induced flow is southward in the sub-
tropical gyre; it must go back northward somehwere. The signals propagate to the west,
suggesting that it should occur in a western boundary current which has a scale ℓ such
that the flow is not completely described by geostrophy.

The wind puts in clockwise swirl; somewhere we must have a source of counter-
clockwise swirl; that can occur via friction on the western boundary but not the eastern
wall. In the vorticity equation the wind stress (in the subtropical gyre where ∂

∂y τ
x > 0)

is putting in negative vorticity; somewhere er need a source of positive (counter-clockwise
spin) Dh

Dt ζ to balance it off. If we integrate over depth and over the basin, the only term left
is the bottom friction. For a nortward flowing current, the bottom drag will be exerting
a southward force on the fluid; for a WBC, this corresponds to counter-clockwise while
for an EBC it would increse the clockwise forcing. Similar arguments apply for side-wall
friction and in the subpolar gyre.
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