
Eddy Dynamics

Transport

Eddies effect†

• horizontal transport
• vertical transport

of the biota. We want to understand both local and averaged effects of these processes.

Vertical transport

Much of the interest in vertical transport focuses on the surface layer, though it can
also be important in establishing deep structure.

A simplified model

We are going to build a simplified model of the vertical density structure, consisting
of a mixed layer, a homogeneous layer representing the water above the thermocline, and
a second denser layer below the thermocline. sketch

The pressures satisfy

pm = ρmg(h1 + h2 − z)

p1 = ρmghm + ρ1g(h1 + h2 − hm − z)

p2 = ρmghm + ρ1g(h1 − hm) + ρ2g(h2 − z)

and, under the assumption that the mixed layer depth is fixed, the gradients of the dynamic
pressure φ = p/ρ become

∇φm = g∇(h1 + h2)

∇φ1 = g∇(h1 + h2)

∇φ2 =
ρ1
ρ2
g∇h1 + g∇h2

or

∇φ1 = ∇φm = ∇φ2 + g
ρ2 − ρ1
ρ2

∇h1

Momentum equations:

∂

∂t
ui + ui · ∇ui + f ẑ× ui = −∇φi

The pressure gradients are independent of z within a layer, so the velocities likewise can
depend only on x and y.

Mass conservation:

† If you ever have me on a committee, be sure to use effect and affect properly! The
usage here is unusual but correct: effect(v)= to bring about. Avoid it and stick to the
effect(n) or affect(v) forms.
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Examining the integral of the mass equation across the bottom layer gives

∂

∂t

∫ h2

0

ρ2 +∇ ·

∫ h2

0

u2ρ2 = ρ2
D

Dt
h2 − wρ2

∣

∣

∣

h2

0

or
∂

∂t
h2 +∇ · h2u2 =

D

Dt
h2 − w(h2)

Taking the thermocline to be a material surface gives w2 = D
Dt
h2 and

∂

∂t
h2 +∇ · h2u2 = 0

Similar equations integrating across a uniform water mass from ha to hb give

∂

∂t
(hb − ha) +∇ · (hb − ha)u =

D

Dt
(hb − ha) + w(ha)− w(hb)

Applying for ha = h2, hb = h2 + h1 − hm and for ha = h2 + h1 − hm, hb = ha + h2,
summing (using u = u1 in both the ML and upper layer) and inserting w(h2) = D

Dt
h2,

w(h1 + h2) =
D
Dt

(h1 + h2) gives

∂

∂t
h1 +∇ · h1u1 = 0

However, looking just at the ML gives

hm∇ · u1 = w(h2 + h1 − hm)− w(h2 + h1)

= w(h2 + h1 − hm)−
D

Dt
(h2 + h1 − hm)

≡ we

with we the entrainment velocity across the MLB. The stretching associated with the
entrainment is therefore

we
hm

= ∇ · u1 = −
1

h1

D

Dt
h1

When the thermocline is shallowing, water is being pushed into the ML (or up and the
ML is mixing back down) so that we > 0.
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Mixed-layer biology

We start with
∂

∂t
bi +∇ · ubi +

∂

∂z
w̃bi = Bi +

∂

∂z
K
∂

∂z
bi

in the ML. Here the vertical velocity includes swimming or sinking. Integrating over the
mixed layer gives

∂

∂t

∫ h0+hm

h0

bi +∇ ·

∫ h0+hm

h0

u1bi =

bi(h0 + hm)

[

D

Dt
(h0 + hm)− w̃(h0 + hm)

]

− bi(h0)

[

D

Dt
h0 − w̃(h0)

]

+

∫ h0+hm

h0

Bi +K
∂

∂z
bi

∣

∣

∣

h0+hm

−K
∂

∂z
bi

∣

∣

∣

h0

Taking bi to be well-mixed within the layer and using the impermeability of the sea-surface
gives

∂

∂t
hmbi +∇ · hmu1bi = b∗i (h0)w̃e +

∫ h0+hm

h0

Bi + λ
[

bi(h
−
0 )− bi

]

The notation b∗i is used as an “upwind” difference: if w̃e > 0 then b∗i = b(h−0 ), the value in
the layer just beneath the interface. If w̃e < 0 then b∗i = bi. The term with λ represents
the small-scale turbulent diffusive flux K/Htransition. In this form, the entrainment and
biological movement such as sinking do not change the integrated values.

The equation above is useful for examining the net biomass, assuming it is almost all
in the mixed layer. We can also write an eqn. for the concentration

∂

∂t
bi + u1 · ∇bi = b∗i (h0)

w̃e
hm

− bi
we
hm

+
1

hm

∫ h0+hm

h0

Bi +
λ

hm

[

bi(h
−
0 )− bi

]

For variables confined to the mixed layer with no independent motion, the flux across
the sea surface will be zero and w̃e = we, giving

∂

∂t
bi + u1 · ∇bi =

we
hm

[b∗i (h0)− bi] +
1

hm

∫ h0+hm

h0

Bi −
λ

hm
bi

with b∗i (h0) = 0 for we > 0 (dilution) and b∗i (h0) = bi for we < 0 (advection in and down
where it disappears because of the biological terms). Here h0 = h1 + h2 − hm. For the
deep values to be zero, the mixed layer should be intermediate in depth

1

hm

∫ h0+hm

h0

dz µ(z) > dp > µ(h0)

The stretching is just we/hm = −
D
Dt

lnh1.
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We can estimate w/h from the vertical vorticity equation:

D

Dt
(ζ + f) = (∇× u+ f ẑ) · ∇w

giving
∂w

∂z
∼

1

f

D

Dt
ζ ∼

U2

fL2

For U = 10 km/d, L = 5 km (frontal scale), f = 8/d, this is 0.5/d which is comparable
to the fast biological time scales. But it is an overestimate, in that the advection depends
on the along-front scales which will be larger (but the cross front scales may be smaller).
Mahadevan et al.(2008) estimate vertical velocities on the edges of eddy fronts to be as
large as 100 m/d giving even larger peak values of ∂w

∂z
.

Eddy transport and mixing

Eddies are thought to provide an “eddy diffusivity” mixing up the larger-scale means.
Let us examine the argument in some detail. Suppose we split the fields up into means
and eddy (or eddy-induced) parts

∂

∂t
bi + u · ∇bi +∇ · u′b′i = Bi(b+ b′)

Stirring and averaging
Stirring
Mixing
Both

Potential vorticity

We find the vorticity equation bu cross-differentiating the momentum equations

D

Dt
u− fv = −

∂

∂x
φ

D

Dt
v + fu = −

∂

∂y
φ

to eliminate the pressure. The result is

D

Dt
(ζ + f) + (ζ + f)∇ · u = 0

Combining with the mass equation gives

D

Dt
(ζ + f)− q

D

Dt
h = 0 or

D

Dt
qh− q

D

Dt
h = 0 ⇒

D

Dt
q = 0

with q = (ζ + f)/h being the “potential vorticity” – a conserved scalar property of the
flow in each layer.
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Nearly geostrophic motions

Rossby waves

The hydrostatic equations are

D

Dt
uj − fvj = −

∂

∂x
φj

D

Dt
vj + fuj = −

∂

∂y
φj

D

Dt
hj + hj∇ · uj = 0

φ1 = φ2 + g′h1

with g′ = g(ρ2 − ρ1)/ρ2 << g and f = f0 + βy.

In the simplest case (“barotropic”), we can find solutions

vj = V cos k(x− ct) , uj = δhj = 0

The pressure balances the coriolis force

φj = f
V

k
sin k(x− ct)

Note that the pressure has a y variation because of β: the pressure signals are stronger in
the north. This leads to an acceleration

∂

∂t
v [= kcV sin k(x− ct)] = −

∂

∂y
φ = −β

V

k
sin k(x− ct)

giving

c = −
β

k2

We find westward propagating waves with the speed decreasing for shorter waves.

The baroclinic case is similar but is only approximate having very small u, δh. How-
ever it is more interesting because it has non-zero vertical velocities (or stretching s =
−we/hm = D

Dt
lnh1 ∼

1

H1

∂
∂t
h1). We can simplify the potential vorticity by setting

Q = Hq − f0 =
H

h

[

ζ + βy − f0
h−H

H

]

and then approximate it by dropping the factor H/h. The PV conservation equation in
the linearized form becomes

∂

∂t

[

ζ ′ − f0
h′

H

]

+ βv′ = 0
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For v′1 = V cos k(x− ct),

∂

∂t
ζ ′1 = −c

∂

∂x
ζ ′1 = −c

∂2

∂x2
v′1 = ck2v′1

and

−
∂

∂t
f0
h′1
H1

= c
f0
H1

∂

∂x
h′1

The hydrostatic equations imply

g′
∂

∂x
h′ =

∂

∂x
(φ′1 − φ′2) = f0(v

′
1 − v′2)

We look for solutions with no net transport v1H1 = −v2H2 so that

∂

∂x
h′ =

f0(H1 +H2)

g′H2

v1

and the PV equation becomes

ck2v1 + c
f2
0 (H1 +H2)

g′H1H2

v1 + βv1 = 0

The same equation holds from the lower layer equations as long as the stretching from the
SSH is neglected h′2 ≃ −h′1.

From this equation we get the propagation rate

c = −
β

k2 + 1/R2
d

with the “deformation radius”

R2
d =

g′H1H2

f2(H1 +H2)

These waves also propagate westward, but more slowly and with a maximum speed of
−βR2

d. In the ocean Rd ∼ 40 km and β ∼ 2× 10−11m−1s−1 = 1.7× 10−3 km−1d−1 giving
a speed order 3 km/d.

Winds excite both kinds of waves, but at scales with k ∼ 1/1000 km giving barotropic
speeds order 2000 km/d. These can cross a 20, 000 km basin in 10 d whereas a baroclinic
wave can take several decades.

However, the baroclinic motions are those which have substantial thermocline dis-
placements and vertical velocities. For H1 = 0.8 km, H2 = 4 km, g′ ∼ 1.3× 105 km/d2 ∼

0.02m/s2. For v1 = 20 km/d and a 40 km length scale, φ1 ∼ 6400 km/d and δh1 ∼ 50m.
This gives a stretching we/hm ∼ c ∂

∂x
(δh1/H1) ∼ 1/200 d. This is really an underestimate,

since the changes associated with advection are much stronger. As mentioned above (but
with a shorter length scale) the vorticity equation suggests U2/L2− ∼ f D

Dt
lnh giving a

stretching time scale order 30 d here. For Rings, v1 ∼ 100 km/d so even the propagation
estimate gives a 40 d time scale. Example Example with 1/40
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Isolated eddies

Isolated eddies such as Rings are characterized by the flow speeds being large compared
to the propagation speeds. As a simple model, ignore the deep flow so that g′h1 = g′H1+φ1
and

D

Dt
u1 + f ẑ× u1 = −∇φ1

∂

∂t
φ1 +∇ · (g′H1 + φ1)u1 = 0

To a reasonable approximation, u1 = 1

f0
ẑ× φ1 and the PV equation (replacing H/h with

1)
D

Dt
Q = 0 , Q = ζ1 + βy −

f0φ1
g′H1

can be written as

∂

∂t
Q+

∂ψ

∂x

∂Q

∂y
−
∂ψ

∂y

∂Q

∂x
= 0 , ψ =

1

f0
φ1 , Q = ∇

2ψ −
1

R2
d

ψ + βy

Movement

∂

∂t
Q′ +

∂ψ

∂x

∂Q′

∂y
−
∂ψ

∂y

∂Q′

∂x
+ β

∂ψ

∂x
= 0

∂

∂t

∫

dxQ′ = 0 ,
∂

∂t

∫

dxxQ′ = β

∫

dx, ψ

But
∫

dxQ′ = −
1

R2
d

∫

dxψ

so
∂

∂t

∫

dxxQ = −βR2
d

∫

dxQ

and the center of PV moves westward at the long wave speed. However, a wave pattern is
also generated so that the peak value of Q′ is not necessarily at the center of mass.

Transport

If we approximate it as moving steadily, then there is a stagnation point where u = c;
in the moving frame, the streamlines form a loop. Within that loop, fluid is transported
with the eddy. Variability causes leakage out and slow loss of properties.
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Upwelling

With this form, the stretching simplifies since h1 ∝ ψ

s = −
1

H1

D

Dt
h1 = −

1

H1

∂

∂t
h1 ≃ c

∂

∂x
h1

But we have to remember that the nutrients, for example, satisfy

D

Dt
N = −uptake+ remin+

w+

hm
[N0 −N ]

gives a net input in the upwelling region integrated along the track (sketch. Dynamically,
the fields are more complex: phys bio

Generation – baroclinic instability

Consider the following model of a jet:

q1 =
1

2

[

f

hs
+

f

hn

]

+
1

2

[

f

hn
−

f

hs

]

tanh(y/W )

This has a geostrophically balanced flow

q =
f −

∂
∂y
u

h
=
f + (g′/f) ∂

2

∂y2
h

h
or

∂2

∂y2
h−

fq

g′
h = −f

Perturbations satisfy
∂

∂t
q′ + v′

∂

∂y
q = 0 , hq′ = ζ ′ − qh′

Note that q2 = f/(H − h) (no deep jet).

For

u′ = −
∂

∂y
ψ −

∂

∂x
Φ , v′ =

∂

∂x
ψ −

∂

∂y
Φ

and using the simplest geostrophic balance for h (taking the divergent flow to be small
comparted to the rotational flow) gives

hq′1 = ∇
2ψ1 −

fq1
g′

(ψ1 − ψ2)

and D
Dt

= ∂
∂t

+ ∂ψ
∂x

∂
∂y

−
∂ψ
∂y

∂
∂x

; the result is coupled equations in ψ1, ψ2.
Growth rate
Stretching

Other forcings include winds, baroclinic and barotropic instability, topography

SQG

Submesoscale
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