
Weight, length, or age models

sketch

The Von Foerster-McKendrik form describes the population by a number density
n(w,x, t) giving the number (or probable number) of organisms per unit weight class and
per unit volume of water. It satisfies an advection-like equation

∂

∂t
n(w, t) +

∂

∂w

[

g(w)n(w, t)
]

= −dz(w)n(w, t) +

∫

dw′E(w|w′)n(w′, t) (1)

where g represents the rate of weight gain (dw/dt), dz the mortality, and E the rate at
which new organisms at size w are created by adults at size w′ reproducing.

We can simplify E by assuming:
• the newborn size does not depend on the adult size or conditions

E(w|w′) = e0(w)e1(w
′, t)

• the birth rate is a function of the number of adults

NA ≡

∫

dwα(w)n(w) , e1(w) = R(NA, t)α(w) ⇒

∫

dw′En = e0(w)NAR(NA, t)

and we can normalize e0 by

∫

dw e0(w) = 1 ,

∫

dw we0(w) = w0

• the weight range for newborn organisms is small – effectively a delta function

e0(w) = δ(w − w0)

The last of these allows us to replace the source term in xx with a boundary condition,
giving

∂

∂t
n+

∂

∂w
gn = −dzn , g(w0)n(w0, t) = NAR(NA) (2)
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Maps

The simplest form which makes the possibility of oscillatory/ chaotic behavior clear
assumes that all reproduction occurs at a specific adult size: α(w) = g

dz
δ(w−wA), with the

factor making α dimensionless and ensuring that
∫

dwαn results in a number of individuals.
The reproducing population is NA = g

dz
n(wA, t); all adults reproduce at a single weight.

With this form, the flux of newborn animals is given by

gn(w0, t) = NA(t)R(NA(t))

Finally, we can solve the equation between w0 and wA easily if g and dz are constant

n(wA, t) = n

(

w0, t−
wA − w0

g

)

exp

(

−dz
wA − w0

g

)

= n(w0, t− T ) exp(−dzT )

with T = (wA − w0)/g being the generation time. Therefore

NA(t) =
1

dz
exp(−dzT )NA(t− T )R(NA(t− T ))

Thus we can algebraically map the number of adults at one generation into the number at
the next. If the growth rate and death rates are not constant, the coefficient of NAR(NA)
changes, but the form remains the same.

As an example, let us assume the rate of producing offspring per adult depends on
the food per adult f = P/NA in the form of a sigmoid curve

R =
r

T

(f/f0)
β

1 + (f/f0)β
=

r

T

1

1 + (N/N0)β

with N0 = P/f0 being the half-saturation value(figure .xx). Then Xn = N(nT )/N0

satisfies

Xn+1 = γ
Xn

1 +Xβ
n

, γ =
r

dzT
exp(−dzT ) (3)

For this iterated map, we can show easily that
• The X = 0 steady state is unstable for γ > 1.
• The state X = (γ − 1)1/β to which the system bifurcates becomes unstable for γ >
β/(β − 2) to a period 2T oscillation.

• Further bifurcations to period 4T , 8T , 16T , etc. occur at shorter and shorter incre-
ments in γ, leading to a non-repeating sequence for a finite value of γ. This is the
“period-doubling” route to chaos.

This map demonstrates the potential for chaotic, unpredictable population fluctuations.
N0=1.5 N0=2.0 N0=2.5 bifurcations
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Finite Range of Reproducing Adults

The iterated map version has a number of oddities: the cycles from each starting time
in the range [0, T ) are independent of each other. Allowing reproduction over a range of
sizes will couple neighboring times together, leading to smooth behavior; therefore, we
might worry that the chaotic behavior disappears. To examine this issue, consider another
case where all animals with weights greater than or equal to wA are reproducing. Then
α(w) = H(w − wA). We can find an equation for the number of adults

NA =

∫

∞

wA

dwn(w)

by integrating over the same limits

∂

∂t
NA = −dzNA + g(wA)n(wA)

Using the solution for n gives a delay-differential equation

∂

∂t
NA(t) = −dzNA(t) + e−dzTNA(t− T )R(NA(t− T ))

with T = (wA − w0)/g again being the generation time. Because of the delay term, this
equation is not just a first order equation, and it can exhibit complex behavior.

We use the same form for R, define X = NA/N0, and nondimensionalize time by T
to find

∂

∂t
X(t) = −dX(t) + dγ

X(t− 1)

1 +X(t− 1)β
, d = dzT (4)

2.5-2.9 4-5 7-8

Coupling to food source

To link this kind of model to lower trophic levels, we need to consider the implied
biomass changes. Although the numbers in any weight class other than w0 can only
decrease, the movement of numbers from one class to a larger class imply an increase in
biomass which must have derived from the animals’ food source. For a single organism,
the rate of change of biomass is just

d

dt
w = g

(in the Lagrangian sense), and the net biomass changes by

d

dt
b = n

d

dt
g = ns =

g

w
b
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(not counting biomass loss by death, which do not affect the food source). This, then,
represents the rate of biomass assimilation by ZP at size w. To derive this from the
number equation, we examine changes in the the net biomass

∂

∂t

∫

wn = w0NAR−

∫

w
∂

∂w
gn−

∫

dzwn

= w0NAR+

∫

gn−

∫

dzwn

The first two terms represent biomass increases; we must relate these to depletion of the
resources. Of course, ZP of different weights may draw from different PP groups, in which
case the terms can be suitably partitioned.

As written, the reproduction draws directly on the prey for its biomass. We would
then think of both R and g as being functions of P , functions which vanish as P → 0.
Therefore, we have a PP equation of the form

∂

∂t
P = uptake−

1

a

∫

g(P,w)n−
1

a
w0R(P,NA)NA − death

As an alternative, suppose that the biomass of offspring is drawn from the adult
biomass directly at a rate which could be independent of the food supply. Then the
w0NAR term must be offset by one of the other two integrals – either the death rate must
increase or the growth rate decrease to compensate. We can represnt these possibilities as

dz → dz +
w0

w
Rα

(so that the integral of the last term times wn cancels w0NAR) or

g → g(P,w)− w0Rα

(with the integral times n providing the reproductive biomass). In those cases, the PP
equation will be

∂

∂t
P = uptake−

1

a

∫

g(P,w)n− death
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Example:

Let us consider the equivalent of the NPZ model using a structured zooplankton
population. We assume that the growth rate is g = G(P )gw(w), the assimilation efficiency
is constant, and the birth rate is R = Re(P ) (Ri = 0), so that reproduction biomass derives
from food intake. The equations become

∂

∂t
P = µP

(

NT − P −

∫

dwwn

)

−
1

a
G(P )

∫

dw gwn−
1

a
w0R(P )

∫

αn− dpP (5a)

∂

∂t
n = −G(P )

∂

∂w
gwn− dzn

G(P )gw(w0)n(w0) = R(P )

∫

αn (5b)

For future use, we note that the ZP biomass Z =
∫

wn satisfies

∂

∂t
Z = G(P )

∫

gwn+ w0R(P )

∫

αn−

∫

dzwn

Simplification:

Numerical solutions show that the shape of n remains constant even when the ampli-
tude is fluctuating. This result suggests the continuous model can have a solution

n(w, t) = Z(t)
n(w)
∫

wn

where the normalization ensures that Z is the biomass. If we substitute this into the
equation 12b, we find

n
∂

∂t
Z = Z

[

−G(P )
∂

∂w
gwn− dzn

]

= Z

[

G(P )

G(P )
dzn− dzn

]

and

ZG(P )gw(w0)n(w0) = ZR(P )

∫

αn = Z
R(P )G(P )

R(P )
gw(w0)n(w0)

which holds since R(P )/R(P) = G(P )/G(P ). Therefore, the ZP dynamics becomes

∂

∂t
Z = Z [γG(P )− dz]
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The PP equation

∂

∂t
P = P (NT − P − Z)−

1

a
G(P )Z

∫

gwn
∫

wn
−

w0

a
R(P )Z

∫

αn
∫

wn
− dpP

can be transformed using the integral of w times the equation for n to

∂

∂t
P = P (NT − P − Z)−

1

a
dz

G(P )

G(P )
Z − dpP

= P (NT − P − Z)−
1

a
γG(P )Z − dpP

so that the two equations for Z and P are precisely the ODE forms with γ = dz/G(P ).

Second example:

Most problems cannot be simplified in the manner above, and the dynamics including
a structured ZP population will generally be richer than the standard ODE models. To
illustrate this, we consider the case where the reproduction biomass is drawn from the
adult population. We assume that Ri = R is simply a constant, that G(P ) = P to match
the QNPZ model, and that the biomass of the offspring can be neglected (w0α/w → 0).
The last assumption is not necessary but simplifies the problem significantly; numerically,
we can show that the finite w0 case is quite similar to the results from the approximated
set:

∂

∂t
P = µP

(

NT − P −

∫

dwwn

)

−
1

a
P

∫

dw gwn− dpP

(6a)

∂

∂t
n = −P

∂

∂w
gwn− dzn (6b)

Pgw(0)n(0) = R

∫

dwαn (6c)

instability P, NA,n n(w,t) comparison

6

http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2ssf.jpg
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2e.jpg
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2d.jpg
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2pz.jpg


Simplification

The previous discussion concentrated on cases where the structured model differs from
the stable, steady QNPZ model. However, for some parameter values (or gw(w), α(w)
functional forms), the structured model still has steady solutions, and we might wish to
explore simplifying the model to obtain a much lower dimension system which can be used
in simulations with space or time-dependent variability. If we write n(w, t) as a product
of the biomass, Z, and the weight structure n̂(w, t)

n(w, t) = Z(t)n̂(w, t) ,

∫

dwwn̂(w, t) = 1

and sustitute into the dynamics, we find

n̂
∂

∂t
Z + Z

∂

∂t
n̂ = −ZP

∂

∂w
gwn̂− dzZn̂

Multiplying by w and integrating gives

∂

∂t
Z = PZγ(t)− dzZ

with γ =
∫

gwn̂ and a structure equation

∂

∂t
n̂ = −P

∂

∂w
gwn̂− Pγn̂ , Pgw(0)n̂(0, t) = R

∫

dwαn̂

The PP equation
∂

∂t
P = µ(NT − P − Z)− γPZ − dpP

likewise has the appropriate form. As a comparison, consider the case when the light level
varies seasonally, so that the PP uptake rate varies. We presume a sinusoidal dependence
with µ changing from 0.6 to 1.4 times the mean value. The simplification works quite
well in the stable case; when limit cycles occur, the approximation represents the average
trajectory reasonably well, but does not produce the large cyclic variations. However, the
detailed cycling depends on initial conditions and thus is not likely to be realistic. The
simplified model compares reasonably well to the average of runs of the full model with
different starting phases; although there is a noticeable offset in the ZP field.

two year cycle R=0.4 R=1 R=1 phase av 20 classes 4 modes

Size-spectrum models

sketch

7

http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2b.ps
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2b2.ps
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2bpav.ps
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2m20.ps
http://synoptic2.mit.edu/~debuser/php/figrot.php/biophys/biomod2?wtpz2m.ps
http://synoptic2.mit.edu/~debuser/php/fig.php/biophys/biomod2?sizstr.jpg


Model formulation

Logarithmic size classes are commonly used to allow spanning a wide range of lengths
or weights. If we take the weight W (in nitrogen units) as our underlying variable, then
ω = ln(W/W0) will be our coordinate, withW0 the size of the smallest autotroph. At times,
we shall discuss the “length” L taken to be the equivalent spherical radius ρ0

4π
3
L3 = W .

The variable Pj measures the biomass in the log-size class centered at (j + 1

2
)∆: j∆ <

ω < (j + 1)∆ where ∆ is the logarithmic width of each class. For the heterotrophs,
the smallest class will be ωZ , and Zj represents the biomass with log-size centered at
ωZ + (j + 1

2
)∆. The smallest classes of P and Z may be photosynthesizing bacteria (e.g.,

prochlorococcus) and protozoans, respectively; however, we shall use “phytoplankton”
(“PP”) and “zooplankton” (“ZP”) as shorthand names for the two groups.

Food for ZP in size class i:
Fi = pijPj (7)

where pij expresses the range of PP which will be grazed (non-zero values) and the prefer-
ence or ability to forage for different-sized prey. (1) the entries represent relative preferences
so that

∑

j pij = 1, (2) the ZP of size ℓZ + j∆ can only ingest prey of size j∆ and smaller
(pij = 0 for j > i), and (3) the preferences or foraging abilities are fixed, independent of
whether there is prey in a particular size class or not. For example, if the food available
for Z2 is (P0 + P1 + P2)/3, it will remain so even if P1 = 0, not switch to (P0 + P2)/2.
These assumptions interact with the presumption that there is a minimum weight W0 in
subtle ways; alterations in them may have unexpected effects on the system.

Grazing rate:

gi
Fi

F1/2,i + Fi

so that the rate of removal of PP in class j by ZP in size i is

gi
Fi

F1/2,i + Fi

Pj

Fi
= gi

Pj

F1/2,i + Fi

Of the grazed food, a fraction ai is assimilated (although we could use aij if the ZP
assimilate different prey differently). Our equation for Zi becomes

∂

∂t
Zi = Zi

[

aigi
Fi

F1/2,i + Fi
− dzi

]

(8)

and the PP equation is

∂

∂t
Pi = Pi

[

µi
N

N1/2,i +N
−

gjpjiZj

F1/2,j + Fj
− dpi

]

(9)
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The continuum equations follow by replacing sums with integrals

F (ω) =

∫

dω′p(ω, ω′)P (ω′) (10)

∂

∂t
P (ω) = P (ω)

[ µ(ω)N

N1/2(ω) +N
−

∫

dω′
g(ω′)p(ω′, ω)Z(ω′)

F1/2(ω′) + F (ω′)
− dp(ω)

]

(11)

∂

∂t
Z(ω) = Z(ω)

[

a(ω)g(ω)F (ω)

F1/2(ω) + F (ω)
− dz(ω)

]

(12)

The number of parameters seems now to be unmanageably large: for each PP class,
we must specify µi, N1/2,i, dpi, and for each ZP class gi, ai, dzi, F1/2,i, and a preference
matrix pij .

For functions such as µi = µ(ωi) or g(ωi), we invoke allometric relations

µ(ωi) = µ0

(

W

W0

)βµ

= µ0 exp(βµω)

where µ0 and βµ are the constants which define the shape of the curve. Allometric rela-
tionships make a lot of sense: many biological characteristics scale with the length, surface
area, or weight.

Ranges and Steady States

Phytoplankton will only be able to grow in the range 0 ≤ ω ≤ ωPmax where the
maximum possible size is given by

µ(ωPmax) = dp(ωPmax)

However, not all of this range may be occupied, depending on parameters such as

NT = N +

∫

dω P (ω) +

∫

dω Z(ω)

Zooplankton require
a(ω)g(ω) > dz(ω)

but will generally be restricted by the amount of available food.
Solution procedure: (6) implies

F (ω) =
ag

ag − dz
F1/2

Solve integral eqn/ linear system (4) for P (ω); choose N , solve similar linear system
∫

dω′p(ω′, ω)
g(ω′)Z(ω′)

F1/2(ω′) + F (ω′)
= dp(ω)−

µ(ω)N

N1/2(ω) +N

for gZ/(F1/2 + F ) and hence Z. Iterate on N until N +
∫

P +
∫

Z = NT .
steady states
Fhalf=100 time evolution
40 classes stability
Fhalf=10 stability
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Carnivory

In the quadratic case, we just include terms

a(ω)

∫

dω′p̃(ω, ω′)Z(ω′)−

∫

dω′p̃(ω′, ω)Z(ω′)

The changes from the herbivore case are significant; the microzooplankton’s death rate in-
creases dramatically, and eventually, we see the larger carnivores. (Note: this is a qradratic
model which should stabilize it!) Grazing structure.

Putting it all together

We have the pieces required to construct a model such as the original figure: tranfer of
biomass between trophic levels, multiple limitations, size-dependent processes, and growth
in size within a population. We can easily rephrase the size-structured model in terms of
weight classes instead of length classes; the L−3/4 allometric rules become w−1/4. We can
also reformulate the structured-population model in terms of biomass in weight classes by
multiplying xx by w

∂

∂t
b = −w

∂

∂w

g

w
b− db

or

∂

∂t
b = −

∂

∂w
gb+

g

w
b− db

g(w0)b(w0) =

∫

dw r(w, s)b(w, s)

In the second form, the ∂
∂w term moves biomass (b dw) conservatively from weight to weight

while the gb/w terms represents the biomass which must be added for the organisms to gain
weight. Transfer of biomass from other parts of the size-species domain must be adequate
to account for this term as well as any residual biomass gain needed for reproduction
(recognizing, of course, the inefficiency of grazing).

The somewhat different form of the reproduction term just makes connecting the new-
born biomass produced by adults of weight w to intake easier. Competitive nonlinearities
can still be included, both here and in the growth term, by making r(w, s) and/or g(w, s)
functionals of b(w, s).

To connect species s to the others on which it feeds or for which it is prey, we define
the transfer function p(w, s|w′, s′) – the amount of food from weight class w′ in species s′

available to weight class w in s. From this, we have the total food available

F (w, s) =

∫

dw′ds′ p(w, s|w′, s′)b(w′, s′)

(recall that we are considering “species” as a continuous variable; in any case, the integral
will be replaced by sums for numerical evaluation.) If we use the Monod form for limitation
in food uptake, the gain by species s organisms at weight w is

G(w, s) = a(w, s)gw(w, s)
F (w, s)

1 + F (w, s)/C(w, s)
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and the losses by predation are

D(w, s) =

∫

dw′ds′
gw(w

′, s′)p(w′, s′|w, s)

1 + F (w′, s′)/C(w′s′)
b(w′, s′);

Some of the input is assimilated and allocated to growth (ag) and some to reproduction
(a − ag); for illustrative purposes, we shall assume that all the newborn biomass comes
from this intake so that

g = wagG , r = (a− ag)G

with the a− ag factor acting like α to isolate the adult portion of the weight spectrum.
With these definitions and choices, the equation becomes

∂

∂t
b = −w

∂

∂w
agGb− (D + d)b

ag(w0)w0G(w0)b(w0) =

∫

(a− ag)Gb
(13)

with the various quantities being functions of w and s. If we integrate with respect to
weight, we find the biomass equation [Z(s) =

∫

dw b(w, s)]:

∂

∂t
Z = wagGb

∣

∣

∣

w0

+

∫

agGb−

∫

(D + d)b =

∫

(aG−D − d)b

Fixed Size Structure Species

Under some rather strong restrictions, we can again find solutions with a stable pop-
ulation structure for species s so that b(w, s, t) = Z(s, t)b(w). In the general equation,
the b factors will cancel out if G can be factored into a part dependent on weight, but
not environment (food, temperature, etc.) and a weight-independent environmental term,
G = Ĝgw. D and d must be independent of weight. The reproductive term was already
assumed to be proportional to G. The resulting structure equation is

Ĝ0w
∂

∂w
aggwb = −(D0 + d)b

ag(w0)w0gw(w0)b(w0) =

∫

(a− ag)gwb

⇒
∫

agwb =
D0 + d

Ĝ0

(14)

where Ĝ0 and D0 are constants, chosen to give a value of (D0+d)/Ĝ0 making the solution
to the structure equation consistent with the boundary condition. With this form, the
temporal changes of the biomass satisfy

∂

∂t
Z = Z

Ĝ

Ĝ0

∫

aĜ0gwb−DZ − dZ = Z

[

Ĝ

Ĝ0

(D0 + d)−D − d

]

(15)
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For the conditions to apply for species s, F and D must be independent of w so that
p = p(s|w′, s′) for all s′ which are prey and p = p(s′, w′|s) for all s′ which are predators.
As an example, consider single-celled organisms which reproduce by cell division: we can
think of αg = 1 so that all intake of nutrient goes to growth. Reproduction takes the
flux into weight 2w0 and redirects it to new cells at weight w0 so that g(w0)b(w0) =
g(2w0)b(2w0) or r = δ(w− 2w0)g(w). We replace the integral condition by G(w0)b(w0) =
G(2w0)b(2w0). The factorization of G and the idea that grazers do not distinguish between
cell sizes seem quite reasonable, and the reproduction indeed scales the same way with
environmental variability as growth. Of course, we do need to account for the variations in
parameters with different species. Even for single-celled organisms, however, this picture
may be oversimplified: Pascual and Caswell (19xx) discuss the case where only part of the
cell cycle proceeds at a nutrient-dependent rate and demonstrate that cell numbers can
have oscillatory or chaotic fluctuations with, respectively, steady or periodic in nutrient
supply. Thus even the simplest organisms may show significant effects from varying weight
distribution.

If we carry the fixed-weight distribution idea to an (unwarranted) extreme, by assum-
ing p = p(s|s′), C = C(s), d = d(s), all species will have fixed distributions

b = Z(s, t)b(w, s) ,

∫

dw b = 1

with the equations for the structure and the dynamics given above; the food, grazing, and
predation mortality are set by

F (s) =

∫

ds′p(s|s′)Z(s′)

Ĝ(s) =
F (s)

1 + F (s)/C(s)

D(s) =

∫

ds′p(s′|s)
Z(s′)

1 + F (s′)/C(s′)

[
∫

dw′ gw(w, s
′)b(w, s′)

]

(16)

(If a is independent of weight, the last integral becomes [D0(s
′) + d(s′)]/[a(s′)Ĝ0(s

′)]
but this is not a fundamental change.) In essence, the model reduces to a multispecies
“compartment” model, conceivably with a much larger set of variables (limiting to the
case where s is treated as continuous).

While some of the effects of weight have been removed, the previous models can still
be developed within this context; indeed, the grouping chosen in that section could be
just as well be phrased in terms of s rather than w. If species are sorted by their mean
weight, then the allometric relationships still make sense. (However, such scaling for the
grazing rates does not account for differences in preference among prey species which have
similar mean weights; this kind information can be incorporated, but makes specification
of p(s|s′) more complex.)
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